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Abstract9

SAT technology has proven to be surprisingly effective in a large variety of domains. However, for10

the Weighted CSP problem dedicated algorithms have always been superior. One approach not11

well-studied so far is the use of SAT in conjunction with the Implicit Hitting Set approach. In this12

work, we explore some alternatives to the existing algorithm of reference. The alternatives, mostly13

borrowed from related boolean frameworks, consider trade-offs for the two main components of the14

IHS approach: the computation of low-cost hitting vectors, and their transformation into high-cost15

cores. For each one, we propose 4 levels of intensity. Since we also test the usefulness of cost function16

merging, our experiments consider 32 different implementations. Our empirical study shows that17

for WCSP it is not easy to identify the best alternative. Nevertheless, the cost-function merging18

encoding and extracting maximal cores seems to be a robust approach.19
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1 Introduction25

The Weighted CSP problem (WCSP) is a framework for discrete optimization with many26

practical applications [7, 24, 25, 4, 7, 24, 25, 4] that has attracted the interest of researchers27

for decades [8, 19, 1, 3]. In this paper, we focus on the Implicit Hitting Set Approach (IHS)28

for WCSP solving. The idea of the IHS algorithms is to iteratively grow a set of unsatisfiable29

pieces of the problem (called cores) and find if it is possible to solve the problem by avoiding30

(i.e, hitting) them. The algorithm terminates when the best way to hit the identified cores31

incidentally also hits the unidentified cores.32

The motivation for our work is that IHS is surprisingly effective for the MaxSAT problem33

[11, 12, 5], and such success has been lifted to several generalization frameworks such as34

Pseudo-boolean optimization [22, 23], MaxSMT [14] and Answering Set Programming [21].35

Although MaxSAT and WCSP are fairly similar, to the best of our knowledge the only works36

that consider IHS for WCSP are [13, 18] and, in both cases, a very simple IHS strategy is37

used.38

In this paper, we test the potential of several variations of the original algorithm that have39

already been proposed and successfully applied in other frameworks. Here, we adapt them to40

WCSPs and test their effect empirically. We consider four different ways in which to obtain41

hitting vectors and four different ways in which to transform them into an improved core.42

Since we also test the effectiveness of cost-function merging [18] we end up with 4×4×2 = 3243

© A. Petrova and J. Larrosa and E. Rollón;
licensed under Creative Commons License CC-BY 4.0

Workshop on Discrete Optimization with Soft Constraints.
Editors: John Q. Open and Joan R. Access; Article No. ; pp. :1–:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aleksandra.petrova@upc.edu
mailto:larrosa@cs.upc.edu
mailto:erollon@cs.upc.edu
https://doi.org/10.4230/LIPIcs.Soft 2024.2024.
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


XX:2 Empirical Evaluation of the IHS Approach for Weighted CSP

different algorithms that we test on several benchmarks.44

The experiments show that different algorithms may have a dramatic difference in45

performance (up to several orders of magnitude). Most importantly, they show that no46

algorithm systematically dominates all the others, but merging cost-functions following [18]47

and computing maximal cores seems to be the most robust strategy. This configuration most48

of the times is the most efficient or is close to the most efficient. Regarding the computation49

of hitting vectors, greedy heuristics often do not pay off. Although there is no clear winner50

between optimal and cost-bounded hitting vectors, cost-bounded ones seem to have more51

potential because it offers more implementation alternatives.52

2 Preliminaries53

A Constraint Satisfaction Problem (CSP) is a pair (X, C) where X is a set of variables54

taking values in a finite domain, and C is a set of constraints. Each constraint depends on a55

subset of variables called scope. Constraints are boolean functions that forbid some of the56

possible assignments of the scope variables. A solution is an assignment to every variable57

that satisfies all the constraints. Solving CSPs is known to be an NP-complete problem [16].58

A Weighted CSP (WCSP) is a CSP augmented with a set F of cost functions. A cost59

function f ∈ F is a mapping that associates a cost to each possible assignment of the variables60

in its scope. The cost of a solution is the sum of costs given by the different cost functions.61

The WCSP problem consists of computing a solution of minimum cost w∗.62

The IHS approach for WCSP is defined in terms of vectors. The cost of vector v⃗ =63

(v1, v2, . . . , vm) is cost(v⃗) =
∑m

i=1 vi. In the (partial) order among same-size vectors, u⃗ ≤ v⃗,64

holds iff for each component i we have that ui ≤ vi. If u⃗ ≤ v⃗ we say that v⃗ dominates u⃗. We65

say that a set of vectors V dominates a vector u⃗, noted u⃗ ≤ V, if there is some v⃗ ∈ V that66

dominates u⃗. Further, we say that a set of vectors V dominates a set of vectors U , noted67

U ≤ V , if V dominates every vector of U . Given a set of vectors U , a vector u⃗ ∈ U is maximal68

if it is not dominated by any other element of U . The set of maximal vectors in U is noted69

U . The set of vectors in U with cost less than w is noted U(<w). If u⃗ is not dominated by70

V we say that it hits V. The minimum cost hitting vector MHV of V is a vector that hits71

V with minimum cost. It is not difficult to see that MHV reduces to the classic minimum72

hitting set problem [15], which is known to be NP-hard.73

In the following, we will consider an arbitrary WCSP (X, C, F ) with m cost functions74

F = {f1, f2, . . . , fm}. A cost vector v⃗ = (v1, v2, . . . , vm) is a vector where each component vi75

is associated to cost function fi, and value vi must be a cost occurring in fi. Cost vector v⃗76

induces a CSP (X, C ∪ Fv⃗) where Fv⃗ denotes the set of constraints (fi ≤ vi) for 1 ≤ i ≤ m77

(namely, cost functions are replaced by constraints). If the CSP induced by v⃗ is satisfiable78

we will say that v⃗ is a solution vector. Otherwise, we will say that v⃗ is a core. The set of all79

cores will be denoted Cores. An optimal solution vector is a solution vector of minimum80

cost. It is easy to see that the cost of an optimal solution vector is the same as the optimum81

cost w∗ of the WCSP.82

3 IHS-based WCSP solving83

The IHS approach relies on the following observation that establish a lower bound and an84

upper bound condition in terms of cores and solutions,85

▶ Observation 1. Consider a solution vector h⃗ and a set of cores K ⊆ Cores. Then,86

MHV (K) ≤ w∗ ≤ cost(⃗h).87
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Function IHS-lb(X, C, F)
begin

K := ∅; lb := 0; ub := ∞ ;
while lb < ub do

h⃗ :=MinCostHV(K);
lb := cost(⃗h);
if SolveCSP(X, C ∪ Fh⃗) then
ub := cost(⃗h);

else
k⃗ :=ImprCore(X, C, F, ub, h⃗);
K := K ∪ {k⃗};

end
end
return lb

end

Function IHS-ub(X, C, F)
begin

K := ∅; lb := 0; ub := ∞ ;
while lb < ub do

h⃗ :=CostBoundedHV(K, ub);
if h⃗ = NUL then lb := ub;
else

if SolveCSP(X, C ∪ Fh⃗) then
ub := cost(⃗h);

else
k⃗ :=ImprCore(X, C, F, ub, h⃗);
K := K ∪ {k⃗};

end
end

end
return lb

end

Algorithm 1 Two different IHS algorithms for WCSP. Both receive as input a WCSP (X, C, F )
and returns the cost of the optimal solution w∗. Function ImprCore() receives as input a core h⃗ and
returns a core k⃗ such that h⃗ ≤ k⃗. It may also improve the upper bound ub.

All the algorithms discussed in this paper will aim at finding a solution h⃗ and a (possibly88

small) set of cores K such that the two bounds meet (that is, MHV (K) = cost(⃗h)). This89

condition corresponds to h⃗ being optimal and K being the proof of its optimality. We will90

refer to this (termination) condition as TC.91

Consider the set of all cores with costs less than w∗. We define a goal core as a maximal92

core in that set. That is, the set of goal cores is GC = Cores(<w∗) The following observation93

rephrases the lower bound part of TC as having a set of cores K that dominates all maximal94

goal cores,95

▶ Observation 2. A set of cores K satisfies MHV (K) = w∗ if and only if GC ≤ K, where96

GC denotes the set of goal cores.97

Therefore, IHS algorithms must compute a set K that dominates every goal core (lower98

bound condition of TC) and an optimal solution (upper bound part of TC).99

3.1 Baseline Algorithm100

The algorithm proposed in [13] appears at the left of Algorithm 1. It is a loop that maintains101

three variables: a working set of cores K, a lower bound lb, and an upper bound ub of the102

optimum. At each iteration, the algorithm computes in h⃗ the MHV of K and solves the CSP103

that it induces. If it is satisfiable the algorithm will stop, else h⃗ is improved into core k⃗,104

which is added to K, and the algorithm goes on. The details for ImprCore() will be discussed105

in Subsection 4.2. For the moment, just note that it returns a core vector k⃗ such that h⃗ ≤ k⃗.106

ImprCore() may find solution vectors during its execution. If their cost is smaller than the107

upper bound, the upper bound will be accordingly updated. Because the emphasis of this108

algorithm is in the lower bound (the upper bound is only updated if better solutions are109

found incidentally) we will refer to it as IHS-lb.110

Sof t 2024
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It is worth noting at this point that each iteration of IHS can be divided into two parts:111

i) the computation of the hitting vector h⃗ which requires solving an NP-hard optimization112

problem and ii) if k⃗ is a core, its transformation into a larger core k⃗ which requires solving113

a sequence of CSPs, which are NP-complete decision problems. In this paper, we restrict114

ourselves to the usual choice of computing hitting vectors with a 0/1 IP solver and solving115

induced CSPs with a SAT solver.116

4 Algorithmic Alternatives117

4.1 Computation of Hitting Vectors118

In the following, we describe some alternatives to alleviate the time spend computing hitting119

vectors.120

4.1.1 Non-optimal Cost-bounded Hitting Vectors121

One way to decrease the workload of each iteration is to rely on non-optimal hitting vectors.122

As suggested in [23], we can replace optimal hitting vectors by hitting vectors of bounded123

cost. The right side of Algorithm 1 shows this idea. At each iteration, a hitting vector h⃗124

with cost less than ub is obtained. If h⃗ is a solution the upper bound is updated, else it is125

improved and added to K. Since the emphasis of this algorithm is in the upper bound, we126

will refer to it as IHS-ub.127

The main advantage of IHS-ub compared to IHS-lb is that iterations are likely to be faster.128

There are several reasons for this. On the one hand, it is much more efficient to find a bounded129

hitting vector which is a decision problem, than finding an optimal hitting vector which is130

an optimization problem. On the other hand, only in the last call of CostBoundedHV() the131

problem will be unsatisfiable which is typically a much more costly task to solve. Another132

reason is that cost-bounded hitting vectors are likely to have a higher cost (near ub) and133

therefore obtaining an improved core k⃗ will not need so many SolveCSP() calls (whatever the134

stopping criteria are). However, the advantage is at the cost of potentially more iterations.135

On the one hand in IHS-ub, not all iterations end up adding a new core because some136

iterations only decrease the upper bound. On the other hand, the computed hitting vectors137

are no longer guaranteed to have cost below w∗, therefore new cores may not contribute138

towards the lower bound part of TC (that is, GC ≤ K).139

4.1.2 Cost-unbounded Hitting Vectors140

Although obtaining cost-bounded hitting vectors can be done much more efficiently in practice141

than obtaining optimal hitting vectors, the problem remains NP-complete and, therefore,142

may still be time-consuming. As suggested in [11] and subsequently applied in [22], one way143

to avoid expensive calls is by removing the cost-bound requirement. Obtaining a low-cost144

hitting vector without requiring the cost to be below a bound can easily be done with an145

incomplete algorithm.146

We consider a greedy algorithm that starts from h⃗ = 0⃗ and makes a sequence of increments147

dictated by some greedy criterion until h⃗ hits every vector in K. Since we want to hit as many148

cores as possible with the lowest cost, our algorithm selects the increment that minimizes the149

corresponding ratio. This algorithm is similar to a well-studied greedy algorithm for vertex150

covering [9].151

If the resulting hitting vector h⃗ is a core, then the algorithm can do the usual core152

improvement adding k⃗ to K as it would have happened with either IHS-lb or IHS-ub. If h⃗153
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is a solution there are two cases. If its cost is less than ub, the upper bound is updated as154

it would have happened with IHS-ub. Alternatively, if its cost is more than or equal to ub,155

then there is no use for k⃗ and the iteration has been useless. To avoid the algorithm entering156

infinite loops, [11] suggests forcing the following iteration not to use the greedy algorithm.157

In our case, depending on whether the next iteration computes an optimal hitting vector or158

a cost-bounded hitting vector we will denote the algorithm IHS-grdlb or IHS-grdub.159

4.2 Improving Cores160

The different alternatives considered so far aimed at alleviating the time spent in computing161

hitting vectors. Now we address the task of improving cores. Adding to K cores with high162

values in their components is beneficial because they will increase the set of cores that they163

dominate and they will likely contribute towards the lower bound part of the Termination164

Condition. However, computing high-cost cores is more time consuming, and the right165

trade-off must be found.166

We are restricting ourselves to algorithms that depart from a hitting vector h⃗ and make167

a sequence of greedy increments to its components until some stopping criteria are achieved168

while preserving the core condition. In the following, we consider four alternatives.169

Maximal Cores. The strongest (and most time consuming) criterion is core maximality170

(that is, achieving a vector that cannot be increased in any of its components without171

losing the core condition). Our algorithm is reminiscent of the so-called destructive MUS172

extraction [20]. It uses a set I that contains the list of indices that may be increased.173

While the set I is not empty, an index is selected and its component is increased. If the174

resulting vector is not a core, the increment is undone and the indexed is removed from I.175

If a component cannot be further increased because it has reached its maximum cost, the176

indexed is also removed from I.177

Minimal Cores. The weakest (and least time consuming) option for improving cores178

is not to do any improvement of h⃗ whatsoever. However, since our implementation of179

SolveCSP() uses an assumptions-based SAT solver, we can take advantage of the core180

improvement that it gives us for free as part of the resolution.181

Cost-bounded Cores. One intermediate option is to improve cores until their cost reaches182

the upper bound. If the cost of h⃗ is less than the optimal value w∗ and the cost of the183

resulting core k⃗ is more than or equal to w∗, then we know that adding k⃗ to the set of184

cores K will contribute towards the lower bound part of the TC because at least one185

more goal core will be dominated. Obviously, during the execution, we do not know the186

value of w∗, but hitting vectors computed by any of the four algorithms, at least at early187

iterations, are likely to have cost less than w∗. Then, if we improve them until their cost188

equals ub, the new set of cores will certainly have contributed towards TC.189

Partially Maximal Cores. Another alternative between minimal and maximal cores that190

was already used in [13] is to soften the condition of core maximality and request that191

the increment of just one component (instead of all of them) produces a solution vector.192

In all our implementations of ImprCore(), we select at each iteration the index i with the193

lowest value vi among the set of candidates. The reason is that having in K cores whose194

minimum value is as large as possible makes it more costly to be hit, which, in turn, makes195

the lower bound grow faster.196

Sof t 2024
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Problem Variables Max dom size Constraints Cost functions Max costs
Rnd domains 16 - 23 30 44 - 59 44 - 59 6 - 9
Rnd weights 16 - 23 5 48 - 68 48 - 68 20 - 21
Rnd sparse 34 - 46 5 99 - 122 99 - 122 7 - 9
Rnd scale-free-4 23 - 25 5 92 - 99 92 - 99 7 -9
Rnd scale-free-5 24 - 25 5 107 - 114 107 - 114 8 -9
Ehi 297 - 315 7 4081 - 4400 4081 - 4400 2
SPOT5 45 - 506 4 122 - 9325 41 - 440 2 - 3
driverlog 46 - 546 4 - 12 156 - 14429 55 - 702 3 - 7
Grid 396 - 400 2 757 - 801 757 - 801 3
Normalized 101 - 8621 2 227 - 19903 57 - 195 2 - 10
Pedigree 208 - 9403 3 - 10 447 - 33795 180 - 10621 3 - 17
CELAR 13 - 222 14 - 44 65 - 944 65 - 876 11 - 137

Table 1 Summary of the benchmarks main characteristics: range of variables, largest domains,
number of constraints, number of cost functions and maximum number of different costs appearing
in the cost functions. Note that these values have been collected after VAC pre-processing.

5 Empirical Results197

The experiments reported ran on nodes with 4 cores 16Gb Dell PowerEdge R240 with Intel198

Xeon E-2124 of 3.3Ghz. MinCostHV() and CostBoundedHV() were modeled as 0-1 integer199

programs and solved with CPLEX [10]. Induced CSPs were encoded as CNF SAT formulas200

and solved with CaDiCaL [6].201

For the experiments, we used several benchmarks aiming at a heterogeneous sample of202

instances. Table 1 summarizes the features of each group of instances. All instances are203

pre-processed and made virtually arc consistent (VAC) [8]. Unless indicated otherwise, we204

use the cost-function merging formulation proposed in [18] where clusters of cost functions205

are heuristically determined using a tree decomposition and (virtually) merged into a single206

cost function. Also, our implementation may compute several disjunctive cores in the same207

iteration as proposed in [13]. All executions had a time out of one hour. We conducted the208

empirical evaluation over the following benchmarks:209

Uniform random instances are characterized by five parameters (n, d, m, w, t) that cor-210

respond to the number of variables, domain size, number of binary cost functions, number211

of different weights at each cost function and number of tuples with non-zero cost at each212

cost function, respectively. The scope of the m (out of n(n−1)
2 alternatives) cost functions,213

the t (out of d2 alternatives) tuples with non-zero cost and their actual cost (out of the w214

alternatives) are decided using a uniform random distribution. We generated 3 groups of215

instances aiming at increasing one of the parameters: domains (25, 30, 50, 5, 750), weights216

(25, 5, 50, 10000, 20), and sparse (50, 5, 100, 5, 20). For each group we generated 50 instances.217

Uniform random instances have been long used for testing purposes, but they are218

sometimes questioned because real instances are anything but random. A more realistic219

graph structure that has been used for empirical testing are scale-free graphs [2]. It is known220

that scale-free networks appear in many real-world networks like the World Wide Web, some221

social networks like papers co-authorship or citation, protein interaction network, etc. In our222

scale-free instances the constraint graph is a scale-free graph following the Barabási-Albert223

model. Instances are also characterized by five parameters (n, d, m, w, t) but unlike uniform224
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random instances, m refers to the model’s parameter. We report results for the classes225

(25, 5, 4, 5, 20) and (25, 5, 5, 5, 20).226

Finally, we selected miscellaneous instances from the well-known evalgm repository1
227

that were within the reach of IHS-based algorithms. The selection includes includes: EHI228

(Random 3-SAT instances embedding a small unsatisfiable part and coverted into a binary229

CSP), SPOT5 (satellite scheduling), driverlog (planning in temporal and metric domains),230

grid (Markov Random Field), normalized (MIPLib), pedigree (genetic Linkage) and CELAR231

(frequency assignment).232

5.1 Results233

Our first analysis is about the impact of using or not using cost-function merging. Table 2234

reports the relative time performance gain of doing cost-function merging. For each bench-235

mark, speed-up is the solving time ratio of its best performing algorithm out of the 16236

alternatives with and without cost-function merging. We observe that cost-function merging237

is consistently useful producing significant speed-ups that in some cases are over 250. The238

only case where cost-function merging is not advantageous is with Grid instances where239

its use causes none of the 16 algorithms to solve any instance (not even with a larger time240

limit of 4 hours). Interestingly, without cost-function merging IHS-ub cores can solve all the241

instances with maximal and cost-bounded cores. The most probable reason is that the grid242

structure is so regular that the tree-decompostion used to decide which functions to merge243

is not appropriate. Because this result is so conclusive, and for the sake of clarity, in the244

following every table reports results with cost-merging except for Grid where the reported245

results are without cost-merging.246

Problem Speed-up
Rnd domains 268.31
Rnd weights 2.18
Rnd sparse 39.33
Rnd scale-free-4 93.70
Rnd scale-free-5 12.69
Ehi 99.53
SPOT5 156.74
driverlog 1.61
Grid 0.46
Normalized 1.32
Pedigree 1.34
CELAR 4.85

Table 2 Relative time performance gain of cost-function merging. On a given benchmark,
speed-up is the solving time ratio of its best performing algorithm with and without cost-function
merging.

Tables 3 and 4 report for each one of the 12 problem classes and each one of the 16247

algorithms, the relative performance with respect to time and space, respectively. Each table248

entry is the ratio w.r.t. the best-performing algorithm on that benchmark. For example, in249

1 http://genoweb.toulouse.inra.fr/ degivry/evalgm/
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Table 3, a 1 identifies the fastest algorithm while a value of r indicates that the algorithm is250

r times slower than the best.251

Our next analysis is about the impact that each algorithm has on the solving time252

(Table 3). Our first observation is that different algorithms have very different running times,253

but no algorithm dominates the others. In some benchmarks, that difference is so extreme254

that the best approach solves all instances while other approaches are not able to solve any255

of the instances within the time limit. If we look at problem classes where every instance256

is solved with all (or nearly all) algorithms and compare speed-up ratios, we still see that257

the best approach is at least 4 times faster than the worst and the different can go up to258

several orders of magnitude. We also observe that some benchmarks are very sensitive with259

respect to the method in which hitting vectors are computed (e.g. Grid, scale-free-5 ), some260

benchmarks are very sensitive to the method in which cores are improved (e.g. CELAR) and261

some benchmarks are very sensitive to both (e.g. SPOT5 ). Therefore, one should use caution262

before concluding from experiments that the HS approach is not suitable for a particular263

type of problem, because it may happen that the right algorithm has not been considered.264

Regarding the different ways to compute hitting vectors, we observe that the best option265

is again highly benchmark dependent. The best algorithm is 5 times with IHS-grdub, 3 times266

with IHS-ub and 4 times with IHS-lb. IHS-grdlb never appears in the best algorithm, but267

when the best algorithm is IHS-lb, it usually performs very closely. We observed that in the268

many cases in which greedy vectors are not beneficial the reason is that except for the very269

first iterations, greedy hitting vectors produce cheap but useless iterations and IHS-grdlb270

(resp. IHS-grdub) converges to IHS-lb (resp. IHS-ub). From that we conjecture that making271

more effective greedy algorithms, even at the cost of being more time consuming may be a272

useful improvement.273

Regarding the different ways to improve cores, we observe that the most common best274

option is to compute maximal cores. The only two exceptions are Pedigree and random-275

domains where the best option is to compute minimal cores. The reason for the exception276

is that in these two benchmarks the induced CSPs are very difficult for the SAT solver277

and it pays off to generate much larger sets of cores even if it is at the cost of making the278

computation of hitting vectors more difficult. This observation let us believe that a promising279

improvement for this type of instances would be to find more efficient SAT solvers or even280

switching to some other solving paradigm.281

It is surprising that the two extreme core improvement methods (maximal and minimal282

cores) are best options and the intermediate methods never are so. Inspecting the results with283

more detail we observe that computing cost-bounded cores is often equivalent to not making284

any core improvement because the core that the assumption-based SAT solver provides285

for free already has a cost larger than the ub. We also observed that the cost of partially286

maximal cores is often too close to the cost of minimal cores (for example in normalized),287

making them to weak.288

Our third analysis is about the impact that each algorithm has on the number of cores289

|K| needed to achieve the Termination Condition GC ≤ K (Table 4). The final size of K is290

relevant because it is related to both the number of iterations and the space requirements.291

Regarding hitting vector computation, the pattern is clear. As expected, IHS-lb (optimal292

hitting vectors) requires fewer cores than IHS-ub cores to dominate the set of goal cores, but293

the difference does not seem to be dramatic. The same thing happens when considering294

greedy hitting vectors. From that, we conjecture that cost-bounded cores quickly become295

nearly as good as optimal cores (probably because the ub gets tight) and the cost of greedy296

cores quickly becomes too high and therefore they become useless.297
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Regarding core improvement, the pattern is also clear. As expected, the weaker the298

improvement, the more cores are needed. Compared with maximal cores, the use of partially299

maximally maximal cores needs a larger |K| but the difference usually is not very large. When300

considering cost-bounded cores the set K ends up being much larger (e.g. Ehi), which means301

that the effort of improving cores until their cost reaches the upper bound is not enough in302

general to dominate more goal cores and accelerate the termination of the execution. As a303

matter of fact, using cost-bounded cores has an effect very close to using minimal cores. A304

probable reason is that the cores provided by the assumption-based SAT solver often satisfy305

that their cost reaches the ub, so both approaches end up being equivalent.306

From the experiments presented in this paper (and many others that we have also307

conducted), we can say that the effectiveness of IHS algorithms still falls far behind the308

state-of-the-art Toulbar2 solver [17]. However, in our experiments we see that there are309

instances where IHS is competitive. For instance, Table 5 compares average solving times310

and number of unsolved instances with Toulbar2 (version 1.2) and the best IHS among311

all the alternatives that we considered. We can see that IHS outperforms toulbar2 in Ehi,312

SPOT5, Grid, Normalized and Pedigree, but toulbar2 outperforms IHS in all the random313

benchmarks. All the instances where IHS seems suitable have in common small domains314

and not too many different costs in their cost functions. Small domains are good for solving315

induced CSPs encoding and solving them with SAT. Not too many different costs means316

smaller vector spaces. The conjunction of these two features seems a very reasonable proxy317

for IHS suitability and designing improvements for problems having this features may be the318

fastest route to find regions where IHS may be competitive.319
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6 Conclusion and Future Work320

We have presented a large empirical evaluation of 32 alternative implementations of the321

Implicit Hitting Set approach for WCSP solving. Although our current implementations of322

IHS are only competitive with the state-of-the-art Toulbar2 solver in selected instances, our323

results show how different is the performance of different alternatives, and we believe that it324

indicates that the approach is very general and has potential.325

We covered a variety of alternatives, but many known improvements that have been326

found useful in other paradigms remain to be adapted to the WCSP framework and tested.327

For example, we want to consider in the future reduced cost fixing or weight-aware cost328

extraction [23]. It is reasonable to expect that the IHS will also benefit from them in the329

WCSP paradigm.330

More importantly, we believe that all the components of the algorithms that we have331

tested can be improved. We want to evaluate alternative ways to solve induced CSPs and a332

natural option is to replace the SAT solver by a constraint programming solver. We also want333

to evaluate alternative ways to find cost-bounded hitting vectors and a natural option would334

be to replace CPLEX by a Pseudo-Boolean optimization solver or a SAT solver with one of335

the many efficient encodings of Pseudo-Boolean constraints. Finally, we want to evaluate336

alternatives to the greedy algorithm and we believe that local search is a promising direction.337
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grdub ub grdlb lb grdub ub grdlb lb
SPOT5 Pedigree

minimal 6.23 6.33 5.94 6.74 1.55 1.36 1.50 1.27
cost-bounded 6.46 6.80 5.68 6.11 1.14 1.17 1.17 1.15
partially maximal 3.04 2.35 2.73 2.24 1.25 1.17 1.23 1.10
maximal 1.67 1.57 1.27 1 1.13 1.05 1.09 1

driverlog CELAR
minimal 31.80 40.77 23.24 21.30 86.75 32.23 80.09 8.90
cost-bounded 29.96 39.08 22.46 21.90 85.75 31.17 81.91 5.23
partially maximal 10.17 8.67 9.66 8.49 20.91 9.27 15.87 3.44
maximal 2.08 1.25 2.00 1 6.27 3.68 5.36 1

Grid Ehi
minimal 87.18 6.61 87.27 1.06 282.08 181.58 282.00 290.17
cost-bounded 69.33 6.61 86.72 1.05 282.53 181.98 281.83 290.82
partially maximal 86.93 7.88 86.90 1.04 7.05 4.95 7.03 5.84
maximal 84.41 7.61 84.55 1 1.16 1 1.19 1.10

Normalized Rnd scale-free-4
minimal 10.95 5.05 6.27 1.93 23.34 21.93 7.63 4.68
cost-bounded 11.41 5.03 5.66 1.93 24.21 22.19 7.76 4.58
partially maximal 6.28 3.64 3.62 1.16 7.91 7.55 3.81 3.04
maximal 2.43 1.49 1.97 1 1.48 1.24 1.29 1

Rnd scale-free-5 Rnd weights
minimal 15.38 15.62 3.56 3.37 17.35 1.63 33.79 16.88
cost-bounded 15.16 15.86 3.35 3.32 19.91 1.69 37.05 16.61
partially maximal 9.68 9.49 2.11 1.95 4.29 1.47 10.89 8.38
maximal 2.07 2.06 1.18 1 2.28 1 2.58 1.38

Rnd domains Rnd sparse
minimal 15.29 8.87 15.84 9.43 95.52 15.14 89.26 4.22
cost-bounded 10.69 5.30 10.79 5.86 95.48 15.12 83.46 4.15
partially maximal 8.02 2.28 7.80 3.38 20.97 6.60 21.50 2.81
maximal 1.55 1 1.58 1.07 2.67 1.69 2.56 1

Table 4 Relative space performance (measured as the size of the set of cores at termination or at
time out) of 16 different IHS algorithms on 12 different problem classes using cost-function merging.
Each entry is the ratio average |K| divided by the minimum |K| among the algorithms.



A. Petrova and J. Larrosa and E. Rollón XX:15

Problem Toulbar2 IHS (best)
time nb. unsolved time nb. unsolved

Rnd domains 0.65 0 13.42 0
Rnd weights 0.01 0 509.04 1
Rnd sparse 0.02 0 20.15 0
Rnd scale-free-4 0.01 0 36.55 0
Rnd scale-free-5 0.03 0 283.73 0
Ehi 136.57 1 10.86 0
SPOT5 2367.06 8 13.25 0
driverlog 0.45 0 3.80 0
Grid 3600 5 1652.77 0
Normalized 912.42 1 707.93 0
Pedigree 631.39 3 81.96 0
CELAR 0.46 0 248.06 0

Table 5 Average running times (in seconds) and number of unsolved instances within the time
limit of 1 hour. Toulbar2 is executed with default parameters. For each benchmark, IHS is its best
among all the alternatives.
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