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Abstract9

Solving combinatorial problems with hard and soft constraints has been an active area of research in10

Artificial Intelligence for several decades. In Constraint Programming (CP), it gives rise either to the11

development of soft (global) constraints, to the reformulation into a global (integer or continuous)12

linear/convex program, or to the reformulation into local cost functions representing constraints13

and preferences in a unified framework. The first approach benefits from a vast catalog of existing14

(soft) constraints. However, each soft constraint includes its own preference representation and a15

dedicated propagator (e.g., a knapsack constraint with assignment costs) that communicates with16

other soft constraints only through the variable domains, which results in weak lower bounds in17

minimization problems. Conversely, the second approach provides a global view with strong lower18

bounds, but the size of the reformulation can be a critical issue when computing bounds (e.g. in19

Computational Protein Design). Here, we focus on the third approach, within the framework of20

Cost Function Networks (CFNs) with so-called soft arc consistency algorithms producing lower21

bounds of intermediate quality between the first two approaches. Recently, the introduction of linear22

constraints as local cost functions increases the modeling applicability in CFNs. In this work, we23

adapt an existing soft arc consistency algorithm called Virtual Arc Consistency (VAC) to take into24

account linear constraints. We call it VAC-lin. In the experimental results, we show that VAC-lin25

significantly improves lower bounds compared to the original VAC algorithm on the MIPLIB 201726

and XCSP benchmarks. This always helps reduce the initial optimality gap, which is valuable27

information for a user, and in some cases, it greatly reduces the solving time.28
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1 Introduction33

Graphical models provide a powerful framework to model combinatorial problems of different34

natures answering various tasks, going from satisfaction problems to probabilistic models [6].35

It employs local functions defined over ‘small’ subset of variables to represent diverse inter-36

actions between the variables. For example, to model the Constraint Satisfaction Problem37

(CSP) [24], each local function is a constraint evaluating to true (satisfied) or false (falsified).38

Here we are interested in Cost Function Networks (CFN) where each local function is a cost39

function evaluating a cost, the task of finding the assignment minimizing the sum of all cost40

functions is known as the Weighted Constraint Satisfaction Problem (WCSP). Most methods41

to find optimal solutions rely on a branch and bound procedure relying either on static42

memory-intensive bounds [11] or on memory-light ones [7] to compute lower bounds. Here,43

we focus on the latter, known as Soft Arc Consitency (SAC) algorithms, because similarly to44

CSP propagation, they reason on each non-unary cost function individually. Different levels45
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of SAC exist, each offering a trade-off between strength of propagation (quality of the lower46

bound) and time to propagate. Finding the correct balance between the quality of derived47

lower bounds and the time to construct them is crucial to achieving efficiency. Virtual Arc48

consistency (VAC) [7] is a strong level of consistency, it can derive a strong lower bound but49

can be expensive to enforce. The principle of VAC is to study a CSP Bool(P) derived from a50

WCSP P . For every cost function, only the tuples and values having a zero cost are allowed51

in Bool(P). If Bool(P) is inconsistent then the lower bound of P can be increased. If the52

inconsistency of Bool(P) is detected by Generalized Arc Consistency (GAC), then VAC has53

been designed to extract a lower bound.54

CFN also benefits from the flexibility of the Constraint Programming (CP) with its ability to55

handle (soft)-global constraints. However, while integrating a global constraint in a CP solver56

only requires an algorithm to prune inconsistent values, in CFN, in addition to the pruning,57

propagators for new constraints must also be able to compute a lower bound. This has58

been done for various global constraints including AllDifferent, clique, and linear constraints59

[2, 10, 21].60

61

Contributions. Motivated by the good performance of VAC and the new introduction62

of linear constraints in CFN, we study here how to join those works. Previous approaches63

handling linear constraints in CFNs tend to absorb unary costs when propagated individually,64

which can no longer be exploited by other propagation. Enforcing VAC allows finding a65

sequence of cost moves involving different propagation and makes communication between66

linear constraints possible. This could greatly increase the computed lower bounds. However,67

enforcing VAC on a linear constraint requires keeping in Bool(P) only the values that can68

be part of a zero-cost tuple. For linear constraints, it requires solving a problem similar to69

the Knapsack problem and thus is NP-complete. We show how we can use reduced costs70

filtering [13] to detect a subset of inconsistent values. This leads to VAC-lin which enforces71

an incomplete GAC on Bool(P). This approach is implemented in toulbar2 and tested on72

several benchmarks.73

2 Background74

2.1 Weighted Constraint Satisfaction Problem75

▶ Definition 1. A Cost Function Network (CFN) P is a tuple (X, D, C,⊤) where X is a76

set of variables, with finite domain Di for i ∈X. C is a set of constraints. Each constraint77

cS ∈ C is defined over a subset of variables S called its scope (S ⊆X). ⊤ is a maximum78

cost indicating a forbidden assignment.79

We denote by (i, v) the value v ∈Di of variable i ∈X. The size of the scope of a constraint80

is its arity. Unary (resp. binary) cost functions have arity 1 (resp. 2). In this paper, we81

assume exactly one unary constraint exists for each variable. Let S ⊆ X be a subset of82

variables, we denote by ℓ(S) the Cartesian product Πi∈SDi of the domains of the variables83

in S. An assignment (or tuple) τ ∈ ℓ(S) is an assignment of all the variables i ∈ S to a value84

of its domain Di. If S = X then τ defines a complete assignment, otherwise it is a partial85

assignment. A constraint over a scope S is denoted cS . The cost of a tuple τ ∈ ℓ(S) for a86

constraint cS is denoted cS(τ). Without loss of generality, we assume all costs are positive87

integers, bounded by ⊤, a special constant signifying infeasibility. Hence if cS(τ) = ⊤ then88

the tuple τ is not a feasible. A constraint cS is hard if for all τ ∈ ℓ(S), cS(τ) ∈ {0,⊤},89

otherwise it is soft. A CFN P that contains only hard constraints is a constraint network90
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(CN). In the following, we use the term cost function interchangeably with the term constraint.91

The cost of a complete assignment τ ∈ ℓ(X) is given by cP (τ) =
∑

cS∈C cS(τ). The Weighted92

Constraint Satisfaction Problem (WCSP) asks, given a CFN P , to find a complete assignment93

τ minimizing cP (τ). This task is NP-hard [8]. When the underlying CFN is a CN, the94

problem is a CSP. In the following, we use WCSP to refer both to the optimization task and95

the underlying CFN.96

Each cost function is either represented in extension or in intention. A cost function97

represented in extension, also known as a table constraint, explicitly lists all the tuples and98

their associated costs. Only low arity cost functions can be written in extension within a99

reasonable memory size limit because the number of tuples grows exponentially with arity. A100

cost function given in intention, is defined by a function or a logical expression that specifies101

the relationship between the variables, for example, global constraints are typically given in102

intention.103

We also assume the existence of a constraint c∅ with empty scope, which represents a104

constant in the objective function and, since there exist no negative costs, it is a lower bound105

on the cost of all possible assignments. c∅ will play a primary role in SAC algorithms.106

2.2 Soft Arc Consistency107

Soft Arc Consistency (SAC) algorithms sequentially examine small subsets of cost functions.108

On top of removing the locally inconsistent values, it computes a lower bound by increasing109

c∅. To achieve this they rely on the notion of reparametrization: a reparameterization P ′ of110

a WCSP P is a WCSP with an identical structure, i.e., the set of scopes and variables are111

identical. The costs assigned by each individual cost function may differ, but cP (τ) = cP ′(τ)112

for all complete assignments τ . We say that a reparametrization is better if it has a higher113

c∅. A reparametrization can be obtained through a sequence of local Equivalence Preserving114

Transformations (EPTs). Let S1 ⊂ S2 be two scopes with corresponding cost functions cS1115

and cS2 . Procedure MoveCost describes how a cost α moves between the corresponding cost116

functions.117

As a matter of terminology, when α > 0, cost moves from the larger arity cost function118

cS′ to the smaller arity cS and the move is called a projection, denoted project(cS , cS′ , τ, α)119

with τ ∈ ℓ(S).When α < 0, cost moves to the larger arity cost function cS′ and the move120

is called an extension, denoted extend(cS , τ, cS′ ,−α).When S = ∅ and |S′| = 1, with121

S′ = {i}, the move is called a unary projection, denoted unaryProject(ci, α), equivalent to122

MoveCost(c∅, ci, ∅, α). We never perform extensions from c∅, so it monotonically increases123

during the run of an algorithm and as we descend a branch of the search tree.124

Finding which cost moves lead to an optimal reparameterization, which means one that125

derives the optimal increase in the lower bound, is not obvious. It has been shown that any126

Procedure MoveCost(cS1 , cS2 , τ1, α): Move α units of cost between the tuple τ1 of scope
S1 and tuples τ2 that extend τ1 in scope S2

Data: Scopes S1 ⊂ S2
Data: τ1 ∈ ℓ(S1)
Data: cost α to move

1 cS1(τ1)← cS1(τ1) + α ;
2 foreach τ2 ∈ ℓ(S2) | τ2[S1] = τ1 do
3 cS2(τ2)← cS2(τ2)− α ;

Sof t 2024
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reparameterization can be derived by a set of local cost moves [16] and that the optimal127

reparameterization (with α rational) – and, equivalently, the optimal set of cost moves –128

can be found from the optimal dual solution of a linear relaxation of the WCSP [7], whose129

feasible region is called the local polytope.130

However, solving this LP to optimality is often prohibitively expensive because the131

worst-case complexity of an exact LP algorithm is O((er + e2)
√

e) [34], where e is the number132

of cost functions and r the largest arity. The poor asymptotic complexity matches empirical133

observation [15]. Moreover, the particular structure of this LP does not allow for a more134

efficient solving algorithm, as it has been shown that solving LPs of this form is as hard as135

solving any LPs [23]. Instead, work has focused on producing good but potentially suboptimal136

feasible dual solutions. Various algorithms have been proposed for this, like Block-Coordinate137

Ascent (BCA) algorithms developed for image analysis [16, 35, 30, 17, 29, 31] or soft arc138

consistencies in constraint programming [26, 18, 9, 36, 7]. Notably, the strongest algorithms139

from both lines of research, such as TRWS [16] and VAC [7] converge on fixpoints with the140

same properties.141

Here, we are interested in soft arc consistency (SAC) and we define some of them.142

▶ Definition 2. A WCSP P is Node Consistent (NC) [18] if for every variable i ∈X there143

exists a value v ∈Di such that ci(v) = 0 and for every value v′ ∈Di, c∅ + ci(v′) < ⊤.144

In the following, we assume that a WCSP is NC before our propagator runs.145

An important SAC algorithm for this paper is Virtual Arc Consistency (VAC) [7]. It146

relies on a particular CSP Bool(P) that can be derived from a WCSP instance P . For every147

cost function in P , except c∅, only the tuples and values having a zero cost are allowed in148

Bool(P). Any satisfying assignment of Bool(P) is also feasible for P and by construction149

has cost c∅, hence that is an optimum assignment of P . On the other hand, if Bool(P) is150

infeasible, no such assignment exists and the optimum of P has a cost strictly greater than151

c∅. It has been shown [7] that an infeasibility certificate produced by arc consistency on152

Bool(P) can be used to derive a reparameterization of P with increased c∅, which is not the153

case for other cases of infeasibility.154

In the following, AC(P ) denotes the arc consistent closure of a CSP P , the unique CSP155

that results from removing arc inconsistent values from domains. An empty AC closure156

implies infeasibility.157

▶ Definition 3 (Virtual Arc Consistency [7]). A WCSP P is virtual arc consistent if the158

(generalized) arc consistency closure of the CSP Bool(P) is non-empty.159

▶ Theorem 4 ([7]). Let P be a WCSP such that c∅ < ⊤. Then there exists a sequence of160

EPTs which when applied to P leads to an increase in c∅ if and only if the arc consistency161

closure of Bool(P) is empty.162

The algorithm to enforce VAC can be decomposed into 3 phases:163

1. Establish (G)AC on Bool(P). If no conflict occurred, then quit.164

2. Given a conflict, perform conflict analysis1 on it to compute a maximal cost λ and165

corresponding sequence of EPTs σ such that applying σ increases c∅ by λ.166

3. Apply σ to P and go back to phase 1.167

1 This is intentionally similar to the term used in SAT, because it uses a post-conflict, reverse chronological
order traversal of the operations performed by propagation.
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Figure 1 (a) A WCSP with 4 Boolean variables, an edge indicates a cost of 1. (b) An equivalent
WCSP verifying VAC.

To see why step 2 is always possible, observe that arc consistency operations in Bool(P )168

can themselves be viewed as EPTs where the cost moved is always ⊤. For example, pruning169

a value (i, a) which has lost all supports in constraint cij can be viewed as extending ⊤ from170

each support (j, b) of (i, a) in j, which marks all supporting tuples of (i, a) in cij as forbidden,171

then projecting ⊤ from cij to (i, a). If we choose a cost λ small enough, we can repeat those172

EPTs in P using λ instead of ⊤, so that no negative costs are introduced. The purpose of173

step 2 then is to identify a maximal value for λ.174

From the above, we see that as long as Bool(P) has an empty arc consistency closure,175

VAC will increase c∅. An additional heuristic variant of VAC that we consider here is VACθ.176

This uses a threshold θ when creating Boolθ(P) and forbids only the values/tuples with a177

cost greater than or equal to θ. When θ = 1, VACθ is equivalent to VAC. Clearly, VACθ may178

discover a subset of the reparameterizations that can be found by VAC. But the higher θ is,179

the higher the costs that are involved in conflicts discovered by GAC in Boolθ(P), hence there180

is a chance that those lead to a higher increase of c∅, although this cannot be guaranteed.181

On the other hand, the lower θ is, the better the chance that Boolθ(P ) actually has an182

empty AC closure. So VACθ is applied by starting with high values for θ in order to quickly183

increase the lower bound, and gradually decrease it.184

The algorithm to enforce VAC is strongly impacted by the size of the cost functions, its185

time complexity is O(nedr) per iteration, where n is the number of variables, e the number186

of cost functions, d the largest domain and r the largest arity. In the presence of global187

constraints, a dedicated algorithm is required to enforce a possibly weaker consistency.188

▶ Example 5. Let P be a WCSP with 4 variables x, y, z, w with domains {a, b} as depicted189

in Figure 1 (a). The AC closure of Bool(P ) is empty, indeed, values (x, a) and (w, b) are190

directly removed from Bool(P) because cx(a) = cy(b) > 0. Consequently, value (y, a) has191

no support on cxy and (z, b) has no support on czw, those values can be removed. Finally,192

(y, b) has no support on cyz and a domain wipe-out occurs at variable y. By analyzing the193

trace that led to this conflict, VAC produces the following sequence of EPTs and obtains the194

WCSP verifying VAC depicted in Figure 1 (b).195

1) extend(cx, a, cxy, 1) 5) extend(cz, b, cyz, 1)
2) extend(cw, b, czw, 1) 6) project(cy, cyz, b, 1)
3) project(cy, cxy, a, 1) 7) unaryP roject(y, 1)
4) project(cz, czw, b, 1)

196

Sof t 2024
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2.3 Linear Constraints197

Linear constraints are global constraints capturing a linear interaction between variables.198

They are expressive and compact and used in a wide range of optimization problems199

including computer science, operations research, and artificial intelligence [3]. We consider200

linear inequality constraints of the form:
∑

i∈S

∑
v∈Di

wivxiv ≥ C, where cS ∈ C, xiv is201

a 0/1 variable taking value 1 when the domain value v ∈ Di is assigned to variable i ∈ S.202

Without loss of generality, we assume the weights wiv and capacity C are positive constants.203

Any linear constraint can be written in that form. We consider hard linear constraints, i.e.,204

for any assignment τ ∈ ℓ(S) that satisfies the constraint, it holds that cS(τ) = 0, otherwise205

cS(τ) = ⊤.206

If EPTs involve a linear constraint, the cost of the allowed tuples is modified, and we207

might get 0 < cS(τ) < ⊤. Recent work introduced a way to represent and propagate linear208

constraints in a WCSP solver [21] through so-called delta costs. A cost δiv is associated with209

each value i ∈ S, v ∈ Di, and it captures the amount of costs moved from the unary cost210

functions to the linear constraints. A cost move from ci(v) to the linear constraint increases211

δiv, while a cost move in the opposite direction decreases it. Hence, we can have negative212

δ costs. We represent by δ∅ the cost moved from this constraint to c∅. This quantity is213

necessarily positive. After any sequence of EPTs, the cost of an assignment τ is defined by:214

cS(τ) =
{∑

i∈S δiτ [i] − δ∅ if τ satisfies the constraint
⊤ otherwise

(1)215

Initially, no cost moves have been performed and all the δ costs are 0.216

We show how to approach the enforcement of Full ∅-Inverse Consistency (F∅IC) on linear217

constraints.218

▶ Definition 6. A WCSP is Full ∅-Inverse Consistent (F∅IC) if for every cost function219

cS ∈ C there exists τ ∈ ℓ(S) such that cS(τ) +
∑

i∈S ci(τ [i]) = 0.220

This can be done by propagating the linear constraints one by one, and each time solving221

the linear relaxation of the following 0/1LP representation of one linear constraint and the222

associated unary costs.223

min
∑

i∈S,v∈Di
(δiv + ci(v))xiv − δ∅ (2a)224 ∑

i∈S,v∈Di
wivxiv ≥ C (2b)225 ∑

v∈Di
xiv = 1, ∀i ∈ S (2c)226

xiv ∈ {0, 1}, ∀i ∈ S, v ∈Di (2d)227

For a linear constraint cS , let this problem be PS . This problem is the Multiple-Choice228

Knapsack Problem (MCKP) [22] and its linear relaxation LPS can be solved efficiently.229

From the optimal dual solution it is possible to derive a sequence of EPTs increasing c∅ by230

the cost of the optimal solution. In the following we will also need to find the minimal cost231

tuple of one linear constraint alone, thus we define P̃S (resp L̃PS) as the 0/1LP (resp LP)232

with modified objective min
∑

i∈S,v∈Di
δivxiv − δ∅. We can observe that any dual solution of233

L̃PS is also a dual solution of LPS . A dual solution can be feasible for LPS and infeasible234

for L̃PS , yet its cost remains the same in both problems. More interestingly, performing235

sensitivity analysis on both problems provides different information. For example, given a236

dual solution y, the reduced cost of xia is defined by the slack of its corresponding dual237

constraint. This value can be interpreted as a lower bound on the difference of objective238
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value between any feasible solution with xia > 0 and the optimal solution. In the context of239

CFN, the reduced cost of a variable xia computed in L̃PS from a dual solution y, denoted240

rcy
S(i, a), gives a lower bound on the minimal cost tuple τ ∈ ℓ(S) in cS verifying τ [i] = a. In241

the following, since we manipulate only one dual solution y at a time, we omit y and write242

rcS(i, a). Computing reduced costs from problem LPS gives information on the minimal243

cost tuple when combining cS with the unary costs. They have been exploited in [21] to244

enforce F∅IC on linear constraints, however, they are not suited for VAC as it mainly relies245

on Bool(P) where unary costs are either 0 or ⊤.246

3 VAC on Linear Constraints247

One problem with the propagation method for linear constraints introduced in [21], is that248

the constraints are propagated one by one and only communicate with unary costs. Therefore,249

once a linear constraint has absorbed a cost, it becomes invisible to other cost functions.250

Moreover, the quality of the lower bound depends largely on the propagation order. Enforcing251

VAC allows the detection of a sequence of EPTs resulting from a combination of several252

constraint propagation, without a fixed propagation order. However, in our case, VAC253

requires enforcing GAC on linear constraints in Bool(P). From equation (1) we know that a254

linear constraint cS allows in Bool(P) only the tuples τ ∈ ℓ(S) satisfying the linear constraint255

and
∑

τ [i]=v(δiv) − δ∅ = 0. Hence, deciding if a variable is GAC with respect to a linear256

constraint demands solving a knapsack problem, which is an NP-complete task. Moreover,257

for each removal, we must be able to provide an explanation as VAC needs one to trace-back258

the removal. An explanation for the removal of value (i, a) is a set of values whose removal259

implies the removal of (i, a) by arc consistency on a constraint cS . We say that an explanation260

is minimal if none of its subsets is an explanation. We show we can use domain propagation,261

a dual optimal solution, and reduced cost filtering [13] to detect a subset of the inconsistent262

tuples in Bool(P) and to produce explanations.263

3.1 Filtering for Linear Constraints with Assignment Costs264

We show here how to use linear constraints within VACθ, rather than the base VAC.265

Enforcing GAC in Boolθ(P) requires to verify for each S ∈ C, i ∈ S, a ∈ Di if there266

exists a tuple τ ∈ ℓ(S), τ [i] = a such that cS(τ) < θ. Specifically, each linear constraint267

is transformed to the following hard constraint in Boolθ(P). Note that we slightly abuse268

notation here and use Boolθ(cS) to denote the hard constraint that corresponds to the269

constraint cS in P .270

Boolθ(cS)(τ) =
{

0 if τ satisfies the constraint and
∑

τ [i]=v δiv − δ∅ < θ

⊤ otherwise
(3)271

Propagating this requires filtering the Knapsack problem depicted by PS . This is NP-272

complete, but has been studied before. Algorithms for it include dynamic propramming for273

enforcing GAC [32], approximate filtering with a fully polynomial time approximation scheme274

[27, 28], and linear programming-based filtering [13, 5]. Here, we use linear programming275

and show how to perform filtering as well as generate explanation, which is needed in order276

to integrate the constraint into VAC.277

Given a linear constraint cS , we say that the removal of a value (i, a) is hard if there278

exists no remaining feasible tuple with value a assigned to variable i i.e ∀τ ∈ ℓ(S), τ [i] = a279

Sof t 2024
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we have cS(τ) = ⊤. Otherwise the removal is soft i.e ∀τ ∈ ℓ(S), τ [i] = a we have cS(τ) ≥ θ.280

The strategies to detect and explain a hard/soft removal are different. Hard removal can281

be detected by enforcing domain consistency. This can be done in linear time and for each282

removal, a minimal explanation is produced using conflict explanation [14].283

In order to detect if a value (i, a) can be soft removed from Boolθ(P ), we solve for each284

linear constraint S a variant of PS (resp P̃S), in which the removed values (j, b) are not285

explicitly forbidden but rather penalized in the objective function by attributing to them286

a new unary cost cj(b) = ⊤. We refer to this first variant as P ′
S (resp P̃ ′

S = P̃S). As we287

want to find the minimal tuple using (i, a), we also fix ∀v ∈Di, v ̸= a, δiv = ⊤. We refer to288

this second variant as Pia
S (resp P̃ia

S ). The use of cost ⊤ for removed values guarantees that289

those values will not appear in an optimal (relaxed) solution because their costs are too high,290

but it does so without modifying the primal constraints. Thus, the only difference between291

PS ,P ′
S ,Pia

S , P̃S and P̃ia
S is the objective function. In particular, an optimal relaxed dual292

solution y of LPia
S is also a valid (nonoptimal) dual solution of L̃P

ia

S and it provides a lower293

bound on Pia
S .294

If the optimal solution of Pia
S has a cost greater than θ then (i, a) can be removed295

from Boolθ(P). Solving such a problem is NP-complete, but we can obtain partial filtering296

by solving its relaxation LPia
S which can be done quite efficiently [22]. To compute an297

explanation it seems natural to perform dual sensitivity analysis and figure out how the298

problem behaves without the filtering made in Boolθ(P). However, computing a dual solution299

y of LPia
S and analyzing LPia

S with it does not provide any useful information because the300

⊤ unary costs appearing in the objective function perturb the reduced costs. Those costs301

don’t appear in L̃P
ia

S , hence we compute the reduced costs and an explanation from L̃P
ia

S302

and the dual solution y obtained from LPia
S . Let OPTia be the optimal relaxed solution303

of LPia
S , it gives a lower bound on the minimal tuple with xia = 1 in Pia

S . If a value (j, b)304

verifies rcS(j, b) ≥ 0, then we know that the minimal cost tuple with xia = 1 and xjb = 1305

costs more than OPTia, and thus it is not part of a minimal explanation for the removal of306

(i, a). Otherwise, in our context a value (j, b) having a negative reduced cost indicates that if307

(j, b) is allowed (cj(b) < ⊤) then the cost of a tuple with xia = 1, xjb = 1 could be lower than308

OPTia, and rcS(j, b) gives the value of the decrease compared to OPTia. More precisely, if309

rcS(j, b) + OPTia < θ we know that (j, b) is necessarily in the explanation. However, this is310

not a necessary condition. Indeed, the reduced costs only give a bound on the change of the311

objective, thus it is possible that there exist (j, b), (k, c) such that rcS(j, b) + OPTia ≥ θ and312

rcS(k, c) + OPTia ≥ θ but the cost of any tuple with both x1a = 1, xjb = 1, and xkc = 1 is313

< θ. Accounting for this is possible, but only at the cost of additional computation. Instead,314

we choose to compute a potentially non-minimal explanation with all values (j, b) such that315

rcS(j, b) < 0.316

This procedure detecting soft removable values requires solving one LP for each possible317

value, which is too costly when filtering Boolθ(P ). We can detect a subset of those values by318

solving only one time LP ′
S and relying on reduced cost based filtering [13, 5]. Suppose the319

optimal relaxed cost of LP ′
S is OPT and we compute the reduced costs associated with L̃PS320

and the dual optimal solution from LP ′
S . For a value (j, b) such that rcS(j, b) + OPT ≥ θ,321

the minimum cost of a tuple that contains it is at least θ and can be removed from Boolθ(P).322

For each removal, we can only compute a straightforward explanation containing all the323

previously removed values. Obtaining a dedicated explanation for a removal requires to solve324

a new LP as in the previous strategy. Solving LP ′
S can also help to directly detect if the325

linear constraint is conflicting in Boolθ(P) i.e OPT ≥ θ. In this case, we can also produce an326

explanation by analyzing the reduced costs of L̃PS .327
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3.2 VAC-lin Subroutines328

Here, we define VAC-lin, a local consistency obtained by enforcing the filtering process329

described in Section 3.1 on the linear constraints of Boolθ(P) and GAC on the other330

constraints. Any value removed by filtering techniques described in Section 3.1 would have331

been removed by enforcing GAC on linear constraints. Thus, the following corollary of332

theorem 4 is true.333

▶ Corollary 7. Let P be a WCSP such that c∅ < ⊤. If enforcing reduced costs filtering and334

domain consistency on the linear constraints of Boolθ(P), and GAC on the other constraints335

leads to a conflict, then there exists a sequence of soft arc consistency operations which when336

applied to P leads to an increase in c∅.337

Enforcing VAC-lin can be done by plugging what is presented in Section 3.1 in the338

VAC algorithm. Specifically, propagation for linear constraints in Boolθ(P ) is performed in339

function VAC-Filter and tracing in function VAC-Tracer.340

Filtering Phase341

VAC-lin considers Boolθ(P) and applies an incomplete GAC on linear constraints and GAC342

on other constraints. It uses a queue R containing the constraints that need to be propagated.343

Initially, R contains every possible pair (line 11), then whenever a value is removed, all the344

constraints linked to this value need to be propagated again (line 22). It ends when a conflict345

appears or no more values can be removed (line 21, 6). Whenever a value (i, a) is removed346

because it has no support on constraint cS , this value is added to a queue Q (line 19), the347

constraint cS and an explanation is recorded in the killer structure (line 20). For a linear348

constraint cS , the filtering process is given in function LinFilter, and enforces an incomplete349

GAC based on Section 3.1. It begins by enforcing domain consistency and solving LP ′
S . If350

it is conflicting (optimal cost ≥ θ or unfeasible constraint) then it produces an explanation351

and goes to the next phase. Otherwise, it studies the reduced costs to remove inconsistent352

values. To avoid extra computational work, a straightforward explanation containing all the353

previously removed values is recorded in killer for each removal. A dedicated explanation354

will be computed in the next phase only when it is required.355

To limit the computation time of VAC-lin, we prioritize applying GAC on table constraints356

and then incomplete GAC on linear constraints.357

Tracing Phase358

In the second phase, we want to trace back the operations leading to a conflict in Boolθ(P)359

and collect a minimal subset of value deletions that is sufficient to explain it. We use a360

Boolean function M to mark the values with a zero cost in P necessary to explain the361

conflict. Our objective is to identify a set of values/tuples with non-zero costs that can362

be used as a source to move costs to the marked values. Initially, only the values in the363

explanation returned by the filtering process are marked (line 20). Let (i, a) be a marked364

value (M(i, a) = true). We can find a source for this value by studying an explanation for this365

removal. The filtering phase gave a first explanation and stored it in killer(i, a). The function366

Find-Explanationia&OPT tries to refine this explanation. For linear constraints, this is done367

by LinExplanationia. Let the pair ⟨E, cS⟩ be a set of value removals and cost function,368

respectively, explaining the removal of (i, a), in the sense that if we can move costs from the369

values in E to cS , then it is possible to move a cost from cS to (i, a). The algorithm looks at370

each value (j, b) in the explanation. If cj(b) ≥ θ then (j, b) can be a source. Otherwise, if371

Sof t 2024
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Algorithm 1 VAC-lin iteration - Phase 1: Filtering

// Propagate a linear constraint in Boolθ(P). Return the set of removed
values or the minimum cost greater than θ, and their explanation.

1 Function(LinFilter(cS))
2 RD ← Domain-Consistency(cS) ;
3 OPT ← Optimal-Relaxed-Solution(cS) ;
4 if OPT ≥ θ or cS is not satisfiable then
5 Expl← Find-Explanation() ;

// If cS is not satisfiable then we consider that OPT = ⊤
6 return (OPT, ∅, Expl) ;
7 Expl← {(i, a) | (i, a) has been removed in Boolθ(P) } ;
8 Removed← {(i, a) | rcS(i, a) + OPT ≥ θ}

⋃
RD ; // Reduced cost filtering

9 return (0,Removed,Expl) ;

// Propagate all the constraints and record the reason for each value removal.
Stop when a conflict occurs or when no more values can be removed.

10 Function(VAC-Filter())
11 R← {cS | cS ∈ C} ;
12 while R ̸= ∅ do
13 cS ← R.Pop() ;
14 (OPT, Removed, Expl)← Filter(cS) ;
15 if OPT ≥ θ then
16 return (OPT, cS , Expl) ;
17 foreach (i, a) ∈ Removed do
18 delete a from Dcurr

i ;
19 Q.Push(i, a) ;
20 killer(i, a)← (cS , Expl) ;
21 if Dcurr

i = ∅ then return (⊤, ∅,
⋃

a∈Di
{(i, a)});

22 else R← R ∪ {cS′ | cS′ ∈ C, cS′ ̸= cS , i ∈ S′};

23 return (0, ∅, ∅) ;
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cj(b) = 0 then (j, b) can’t directly provide costs to cS , this value is marked M(j, b) = true372

and will need to be traced back. This is done in the function Update-Counters(). The373

values are visited by following the queue Q and starting from the last inserted value. Thus,374

the deleted values are explored in anti-causal order: a deleted value is always explored before375

any of the removals that caused its deletion.376

The algorithm also computes λ the maximal cost movable to c∅ without introducing377

negative costs. The value of λ depends on the quantity of costs available at each source and378

the number of operations involving the marked values. Indeed, each value can be the cause379

of multiple removals and must send costs to multiple cost functions. To keep track of this,380

Cooper et .al [7] maintain three counters: k(i, a) is the number of quanta requested by a381

value (i, a), kcS
(i, a) is the number of quanta that (i, a) must extend to cS and k(cS , τ) is382

the number of quanta requested by tuple τ ∈ ℓ(S). We have k(i, a) =
∑

cS∈C,i∈S kcS
(i, a).383

Initially, the values in the explanation returned by the filtering process request 1 quantum384

(line 20). We choose λ to be the maximal cost satisfying all the requests. For example,385

if a cost of 4 is available on value (i, a) and k(i, a) = 2, then λ ≤ 4
2 = 2. Thus, initially,386

λ can’t be greater than the optimal relaxed solution returned by the filtering phase (line387

17), nor the unary costs of the values in the explanation (line 5). However, the number388

of elements k(cS , τ) grows exponentially with the size of the arity of the constraints. It389

would be very costly to maintain in large arity linear constraints. Instead, we introduce a390

counter kcS
giving an upper bound on the maximal number of quanta requested by one tuple:391

kcS
≥ k(cS , τ) ∀τ ∈ ℓ(S). This counter starts at 0 for every constraint and is updated only392

for linear constraints in function LinExplanationia. This counter is also set to 1 when a393

linear constraint is responsible for the conflict. We present here how those structures are394

updated when a linear constraint is involved in a value removal.395

If a value (i, a) has been removed due to a linear constraint cS , we want to compute396

the minimal cost tuple with value a assigned to variable i in the linear constraint along an397

explanation. This is done in function LinExplanationia by solving LPia
S . If (i, a) has been398

hard removed then all the tuples have a cost ⊤ and none of them may limit the value of399

λ. An explanation is computed using conflict explanation [14]. Otherwise, let OPTia be400

the optimal cost of LPia
S . If (i, a) has been soft removed, then we increase kcS

by k(i, a)401

(line 13) and update λ according to OPTia and kcS
: λ ≤ OP Tia

kcS
(line 28). We add in the402

explanation the values (j, b) for which rcS(j, b) < 0 as described in 3.1. Finally, in both403

cases, the k structure of the values within the explanation are updated. For each value (j, b)404

in the explanation then k(j, b) = k(j, b) + k(i, a). Those values are also marked (structure405

M) if their unary cost is null (line 4), otherwise we update λ (line 5) if necessary.406

Finally, all EPTs are performed according to killer and R structures where the queue407

R contains all the marked values, and their minimal explanations have been saved in killer.408

After this sequence of EPTs, we know a cost of λ can be moved to c∅. Example 8 illustrates409

how to enforce VAC-lin.410

The space complexity of VAC-lin is dominated both by the killer structure, for each411

variable we associate to each value an explanation with maximal size d(r − 1), where d is412

the maximum domain size and r is the largest linear constraint, and by the delta costs δia413

associated to every cost function (total number of e functions). Hence the space complexity414

is O(nrd2 + erd). As for time complexity, the filtering process requires solving a relaxed415

knapsack problem in O(rd log(rd))-time for each constraint, which can be propagated up to416

rd times. Thus, the total complexity is O(er2d2 log(rd)). Concerning the tracing phase, there417

are at most nd values in the queue Q, it needs at most O(rd log(rd)) to find an explanation418

of a removal caused by a linear constraint. Thus, the total time complexity of this phase is419
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Algorithm 2 VAC-lin iteration - Phase 2: Computing λ

1 Function(Update-Counters((i, a), cS , KillerSet))
2 foreach (j, b) ∈ KillerSet do
3 k(j, b)← k(j, b) + k(i, a) ;
4 if cj(b) = 0 then M(j, b)← true ;
5 else λ← min(λ,

cj(b)
k(j,b) );

// Computes an explanation for the removal of value (i, a) along with an
approximation of the minimal cost tuple with value a assigned to variable
i.

6 Function(LinExplanationia(cS ,OldExpl,(i, a)))
7 foreach (j, b) ∈ OldExpl do Fix cj(b) = ⊤;
8 Fix ∀b ̸= a, δib = ⊤ ;
9 OPTia ← Optimal-Relaxed-Solution(cS) ;

10 NewExpl← Find-Explanation() ;
11 if cS is not satisfiable then
12 return (max(k(i, a), kcS

)× λ, NewExpl) ;
13 else kcS

= kcS
+ k(i, a);

14 return (OPTia, NewExpl) ;

// Trace the conflict found in VAC-Filter back to values with cost > θ.
Compute λ the maximal cost movable to c∅.

15 Function(VAC-Tracer())
16 (OPT, cconflict, Expl)← VAC-Filter() ;
17 λ← OPT ;
18 if cconflict ̸= ∅ then kcconflict

= 1 ;
19 foreach (i, a) ∈ Expl do
20 k(i, a)← 1, M(i, a)← true ;
21 if ci(a) > 0 then M(i, a)← false, λ← min(λ, ci(a)) ;
22 while (Q ̸= ∅) do
23 (i, a)← Q.Pop() ;
24 if M(i, a) then
25 R.Push(i, a) ;
26 cS ← killer(i, a).first ;
27 (OPTia, Expl)← Find-Explanationia&OPT(cS , killer(i, a).second, (i, a)) ;
28 OPTia ← OP Tia

max(k(i,a),kcS
) ;

29 λ← min(λ, OPTia) ;
30 Update-Counters((i, a), cS , Expl) ;
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O(nrd2 log(rd)). Finally, the number of required EPTs to increase c∅ is at most O(erd).420

▶ Example 8. Let P be a WCSP with 6 Boolean variables with domain {a, b}, and constraints421

c12345 : 7x1a + 7x2a + 3x3a + 3x4a + 3x5a ≥ 10, c14 : x1a + x4b ≥ 1, c246 : 2x6a + x2b + x4a ≥ 1422

and c1(a) = 2, c3(a) = 2, c6(a) = 2, c∅ = 0. Propagating the constraints as did in [21] does423

not increase c∅. The optimal relaxed solution of this problem is 0,824 ({x1a = 0, 41176, x2a =424

0, 41176, x3a = 0, x4a = 0, 41176, x5a = 1, x6a = 0}), we show that enforcing VAC-lin425

increases c∅ by 1.426

If we apply VAC-lin with a threshold θ = 1. In Boolθ(P), (1, a), (3, a) and (6, a) are directly427

removed, it follows by domain propagation on c12345 that (2, b) can be removed and we set428

killer(2, b) = (c12345, {(1, a), (3, a)}). Similarly, (4, b) is removed by domain propagation on429

c246 and we set killer(4, b) = (c246, {(2, b), (6, a)}). Finally c14 is infeasible with explanation430

{(1, a), (4, b)}, thus Boolθ(P) is not GAC.431

We set λ = ⊤ and start tracing back the GAC operations. c14 is infeasible because (1, a) and432

(4, b) have been removed. The k structures are updated: k(1, a) = k(4, b) = kc14 = 1. We433

directly have c1(a) = 2, we can use this cost as a source and update λ: λ = c1(a)
k(1,a) = 2. Value434

(4, b) verifies c4(b) = 0, hence, the value is marked: M(4, b) = True and need to be traced.435

Value (4, b) has been hard removed because it has no support on c246, the solver computes436

the minimal explanation {(2, b), (6, a)} using conflict explanation [14]. The k structures are437

updated: k(2, b) = k(6, a) = kc246 = k(4, b) = 1. We directly have c6(a) = 2, we can use this438

cost as a source, λ does not need to be modified. Value (2, b) verifies c2(b) = 0, hence, the439

value is marked: M(2, b) = True and need to be traced. Value (2, b) has been hard removed440

because it has no support on c12345, the solver computes the minimal explanation {(1, a)}441

using conflict explanation [14]. We update the k structures: k(1, a) = k(1, a) + k(2, b) = 2,442

kc12345 = 1. We need to update λ: λ = c1(a)
k(1,a) = 1. The conflict has been explained.443

We deduce the following EPTs from R, killer, and λ:444

1) extend(c1, a, c12345, 1) 5) project(c4, c246, b, 1)
2) project(c2, c12345, b, 1) 6) extend(c4, b, c14, 1)
3) extend(c2, b, c246, 1) 7) extend(c1, a, c14, 1)
4) extend(c6, a, c246, 1) 8) project(c∅, c14, ∅, 1)

445

4 Experimental Results446

We implemented VAC-lin in toulbar2, an open-source C++ WCSP solver.2 The original447

VAC algorithm was already implemented in the solver (only for binary cost functions in448

extension). Both VAC and VAC-lin are applied in preprocessing only. A weaker SAC449

algorithm (EDAC [9]) is applied at every search node of a hybrid best/depth-first branch-450

and-bound search method [1]. We also considered solving without VAC, which corresponds451

to the default setting in toulbar2 (called no-VAC in the results). We compared the different452

variants of toulbar2 (no-VAC, VAC, VAC-lin) with choco, an open-source Java CP solver453

and IBM cplex, a state-of-the-art integer programming solver.3 Choco and toulba2 used the454

same dom/wdeg variable ordering heuristic [4] with last conflict [19]. The value ordering455

heuristic is the minimum domain value for choco and EAC/VAC/VAC-lin support value for456

toulbar2 [7, 33]. In VAC and VAC-lin, it corresponds to choosing first the minimum domain457

value in Bool(P) after doing the filtering phase. Both solvers use solution phase saving [12].458

2 https://github.com/toulbar2/toulbar2 version 1.2.1.
3 https://github.com/chocoteam/choco-solver version 4.10.14 and cplex version 22.1.1.0 in single-

thread mode and with non-premature stop parameters EPAGAP=EPGAP=EPINT=0.
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bench total no-VAC VAC VAC-lin LP
MIPLIB 2017 184 40.14% (150) 40.07% (152) 48.05% (143) 74.33% (179)

CPD 30 99.9635% (30) 99.979% (30) 99.9803% (30) 99.9853% (25)
PB’2007 77 74.43% (77) 74.90% (77) 86.67% (77) 89.14% (77)

XCSP’2022 158 25.54% (136) 27.26% (136) 27.70% (136) 38.71% (100)
XCSP’2023 155 5.92% (134) 5.92% (134) 6.85% (119) 15.57% (92)

Table 1 Quality of lower bounds per benchmark averaged over the number of instances (in
parentheses) where a particular method produced a lower bound in memory and CPU-time limits.

To test our approach with a large number of linear constraints, we chose integer linear459

problems from the MIPLIP 2017 benchmark. On the opposite, we tested on the Computational460

Protein Design (CPD) benchmark having few additional linear constraints, large domains,461

and several binary cost functions in extension. We also tested on a selection of the Pseudo-462

Boolean 2007 Evaluation benchmark (PB07). Last, to show the expressive power of CFNs463

with linear constraints, we experimented with the XCSP 2022/2023 benchmarks.464

Experiments on MIPLIB were made on a single thread of a cluster of AMD EPYC 7713465

at 2.0/3.7 GHz (turbo) with 8GB and 3, 600-second CPU-time limits. Experiments on CPD466

/ XCSP / PB07 were made on a single core of an Intel Xeon E5-2680 v3 at 2.5GHz with467

64GB and 3, 600s / 2, 400 / 1, 800 limits respectively.4468

4.1 MIPLIB 2017 01LP469

We selected 200 instances from the MIPLIB 2017 collection, containing only Boolean 0/1470

variables. Among them, 184 instances have a known feasible solution.5 We preprocessed471

them using cplex and applied our different methods to these preprocessed instances. In472

Table 1, we report the average quality of lower bounds for our three variants, no-VAC, VAC,473

and VAC-lin, and also for the continuous linear relaxation (LP).6 As expected, the linear474

relaxation gives the strongest bounds. It is also the most robust with only 5 instances where475

the dual simplex did not finish in 1 hour. Default toulbar2 (no-VAC) failed to produce476

an initial lower bound on almost 20% of the instances, showing a lot of engineering work477

remains to be done to reach the same efficiency level as a commercial state-of-the-art LP478

solver. Although the original VAC algorithm cannot prove profitable on this benchmark479

due to the limited number of arity-2 linear constraints, our VAC-lin significantly improves480

the initial bound, going from 40% to 48% on average. But for this benchmark, it was not481

sufficient to solve any more instances (15 solved instances in total whereas cplex solved 100).482

It did not solve one instance solved by VAC or no-VAC in 5.4s (4.3s resp.). This instance483

has very large costs (neos-633273). Here VAC-lin made 181,082 iterations before time-out.7484

cplex solved it in 0.17s. choco performed poorly, as toulbar2, solving 14 instances (Table 2).485

4 For CPD, we ran choco on an Intel Xeon E5-2687W v4 at 3GHz with 256GB and 3, 600s. We also add
the option -d: in toulbar2 to remove its default dichotomic branching rule.

5 https://miplib.zib.de/tag_collection.html
6 The quality of a nonzero bound l for a given instance with best-known nonzero solution value b is defined

by max(0, min(l/b, b/l)). The quality is zero otherwise. We report average quality over the number of
successful instances producing a bound at the root search node (a different number for each method).

7 This problem is already known for VAC [7]. Premature termination is a possible workaround.

https://miplib.zib.de/tag_collection.html
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bench total choco cplex toulbar2-no-VAC toulbar2-VAC toulbar2-VAC-lin
MIPLIB 2017 184 14 100 16 16 15

CPD 30 0 19 29 30 30
PB’2007 77 16 67 57 57 66

XCSP’2022 158 41 63 57 58 59
XCSP’2023 155 20 39 15 14 21
Table 2 Number of solved instances per benchmark.

4.2 Computational Protein Design with Diversity Constraints486

As in [21], we selected 30 CPD instances having from 23 to 97 variables and 48 to 194 values487

in their largest domain. For each instance, ten diverse solutions with a Hamming distance488

equal to ten were generated using toulbar2 with a dual encoding [25]. Next, we transformed489

the resulting solutions into ten linear diversity constraints and added them to our original490

instance. Choco could not solve any CPD instance in 1 hour. It found solutions for half of491

the instances with an average distance to optimality of 0.2155%. VAC and VAC-lin produced492

almost the same results, solving all the instances to optimality. VAC-lin improved the initial493

lower bound found by VAC in one-third of the instances. The absolute initial gap was reduced494

by 9.87%, going from VAC to VAC-lin. However, it did not reduce the number of search495

nodes, nor its solving time significantly. The same behavior between VAC and VAC-lin was496

observed with an additional upper-bound preprocessing called RASPS [33]. no-VAC could497

not solve one instance to optimality (1BRS) and cplex solved half of the instances (Fig.3.L).498

4.3 Pseudo Boolean 2007 OPT-SMALLINT-LIN-Other Competition499

We ran experiments on 77 instances introduced at PB 2007 Evaluation. They correspond500

to unweighted Max-SAT instances with 66.3% of arity-2 clauses, 25% of arity-3, and the501

rest from arity 4 up to 3, 140.8 Here cplex obtained the best results, solving 67 instances502

within the CPU-time limit of 1, 800s. It dominates VAC-lin, which solved 66 instances and503

was much slower than cplex (see Table 2 and Fig.3.Right).9 The original VAC algorithm did504

not improve the baseline (no-VAC and VAC having almost the same results, we draw only505

no-VAC in Fig.3.R).506

For this benchmark, VAC-lin clearly dominates VAC, which solved 57 instances.10 The507

largest instance solved by VAC-lin (in 387s, compared to 38s for cplex) has 203, 287 variables508

and 469, 077 clauses. Choco did not perform well, solving only 16 instances. However, it509

found better solutions on the unsolved aksoy/decomp instances than the other solvers.11
510

4.4 XCSP 2022 and 2023 MiniCOP Competition511

We restricted to the mini COP category of the 2022 and 2023 XCSP competitions. 12
512

8 http://www.cril.univ-artois.fr/PB07/benchs/PB07-OTHER.tar. 10 aksoy/decomp instances contain
also capacity constraints and were not solved by any solver in our experiments.

9 It did not solve instance aksoy/normalized-fir08_area_delay. cplex solved it in 18.5 seconds. The best
solver in the Max-SAT Evaluation 2023 took 34.56s to solve this instance (WMaxCDCL-S6-HS12).

10 E.g., VAC and no-VAC did not solve manquinho/normalized-f20c10b_017_area_delay whereas VAC-lin
solved it in 43s and cplex in 2.3s.

11 Average objective value of 27.6 by choco, 30.8 by VAC and no-VAC. cplex and VAC-lin did not find a
solution for normalized-matrix_5x3_4 instance.

12 https://xcsp.org/competitions
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Although the lower bound quality of VAC-lin is slightly better than VAC, it is much513

higher in some particular families (XCSP22/CoinsGrid, XCSP23/Auctions) where the solving514

time was greatly reduced compared to the original VAC algorithm. Thus, VAC-lin solved a515

few more instances than VAC or no-VAC. It also performed better than or similar to choco516

depending on the benchmark.13
517

It is not a surprise to see the nice results obtained by cplex. It was already observed in518

past MiniZinc Challenges.519

5 Conclusion520

Although VAC-lin improved the initial lower bound compared to the original VAC, in most521

cases it wax not sufficient to obtain significant speed-up (except on some particular categories522

of PB07 and XCSP). For some difficult instances, applying a stronger soft arc consistency523

algorithm during search can pay off [20]. It remains to test VAC-lin in such situations. In524

the future, we would like to apply the same methodology we made for linear constraints to525

other global constraints such as AllDifferent.526
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bench choco cplex no-VAC VAC VAC-lin
MIPLIB 2017 244,882 ( 82 ) 1,968 ( 153 ) 1,373 ( 74 ) 1,238 ( 75 ) 1,080 ( 70 )

CPD 788 ( 30 ) 298 ( 19 ) 675 ( 30 ) 604 ( 30 ) 589 ( 30 )
PB’2007 308 ( 77 ) 315 ( 76 ) 283 ( 77 ) 280 ( 77 ) 243 ( 76 )

XCSP’2022 10,499 ( 157 ) 812 ( 110 ) 1,971 ( 123 ) 1,894 ( 123 ) 1,760 ( 123 )
XCSP’2023 12,810 ( 144 ) 491 ( 93 ) 2,867 ( 119 ) 2,664 ( 119 ) 2,190 ( 107 )
Table 3 Total number of solutions found by each search method per benchmark (in parentheses,

number of instances where at least one solution has been found). E.g., on CoinsGrid-31-14, choco
found 961 intermediate solutions before reaching the time limit, whereas no-VAC and VAC found 24
intermediate solutions, VAC-lin 3 (optimality proof in 6.37s), and cplex only 1 (optimality in 0.01s).
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Figure 2 Quality of lower bounds on MIPLIB 2017.
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Figure 3 Cactus plot of CPU-time to solve CPD with diversity (Left Fig.) and PB07 (Right).
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Figure 4 Cactus plot of CPU-time to solve XCSP’2022 (Left Fig.) and XCSP’2023 (Right).
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