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Abstract10

Over the past few decades, there has been a remarkable improvement in the performance of11

combinatorial solvers, which has led to their practical usage in real-world applications. In some of12

these applications, the correctness of the solver’s result is of utmost importance. Unfortunately, the13

reality is different: the algorithmic complexity of modern solvers enables bugs to sneak into the14

source code. For Satisfiability Checking (SAT), this problem was mitigated by letting the solver write15

down a formal proof of correctness of the obtained solution, which is also known as proof logging.16

However, for more expressive fields such as MaxSAT, which is the optimization variant of SAT, proof17

logging had not yet had its breakthrough until recently, when the proof system VeriPB was put18

forward as a good candidate to serve as a general-purpose proof system for MaxSAT solvers. In this19

paper, we show how VeriPB can be used as a proof system to let the Branch-and-Bound MaxSAT20

solver MaxCDCL produce proofs of optimality for its solutions. This is the first state-of-the-art21

MaxSAT solver that implements the Branch-and-Bound approach, opposed to the SAT-based solvers22

with proof logging in earlier work. We also show how to use VeriPB to add proof logging for an23

encoding of the model improving constraint into CNF based on Multi-valued Decision Diagrams24

(MDD).25
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1 Introduction33

With ever increasingly efficient solvers being developed in various areas concerned with34

combinatorial search and optimization, we have now effectively arrived in a situation where35

NP hard problems are routinely tackled in practice. This maturation has resulted in solvers36

being deployed in various practical use cases, including safety-critical applications or making37

life-affecting decisions (e.g., verifying software that drives our transportation infrastructure38

[16], checking correctness of plans for the operation of the reaction control system of the39

space shuttle [32], or matching donors and recipients for kidney transplants [29]). For this40

reason, it is of utmost importance that the results produced by such solvers are guaranteed41

to be correct. Unfortunately, this is not always the case; in fact, there have been numerous42

reports of solvers outputting infeasible solutions, or falsely claiming optimality or the absence43

of solutions [2, 8, 9, 13, 18, 26].44
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This problem calls for a systematic solution. The most evident solution would be to use45

formal verification; that is, using a proof assistant [3, 31, 34, 15] to prove that a solver is46

correct. However, in practice, using formal verification means sacrificing performance [17, 22],47

which is precisely what has led to the success of combinatorial optimization.48

Instead, what we believe to be the way forward is to use certifying algorithms [30], an49

idea that is also known as proof logging in the setting of combinatorial optimization. With50

proof logging, the solver at hand does not only produce an answer (e.g., an optimal solution51

for optimization problems), but also a proof of correctness of this answer that can easily (in52

terms of the size of the proof) be verified by an independent tool (known as the proof checker).53

Next to guaranteeing correctness, proof logging is also very useful as a software development54

methodology: it facilitates advanced testing and debugging of solver code. Moreover, the55

produced proofs can be seen as an auditable record of how and why a certain conclusion was56

reached.57

Proof logging has been pioneered in the field of Boolean satisfiability (SAT), where58

numerous proof formats and proof checkers (including formally verified checkers) have seen59

the light of day [4, 21, 23, 37, 14], with a breakthrough moment when it was used to resolve60

the Pythagorean triple problem, resulting in the “largest math proof ever” [24]. Moreover,61

for years, proof logging has been mandatory in (the main tracks) of the yearly solving62

competition, reflecting the fact that the community effectively demands that all SAT solvers63

be certifying.64

In this paper, we are concerned with maximum satisfiability (MaxSAT), the optimization65

variant of SAT. In MaxSAT, proof logging is less well-spread. Only recently was the VeriPB66

proof system proposed as a general-purpose proof logging methodology for MaxSAT [36].67

VeriPB has been successfully applied for adding proof logging to MaxSAT solvers employing68

solution-improving search [36, 35](where a SAT oracle is repeatedly queried each time69

searching for a solution that improves upon the previously best found solution) as well as for70

core-guided search (where a SAT oracle is repeatedly queried under ever-relaxing optimistic71

assumptions). Next to these two search paradigms, in MaxSAT also implicit hitting set and72

branch-and-bound are used in state-of-the-art MaxSAT solvers.73

In this paper, we are concerned with bringing VeriPB-based certification to branch-and-74

bound search [28], thereby covering another search paradigm for MaxSAT solving. Modern75

branch-and-bound solvers combine conflict-driven clause learning (CDCL) [33] with a clever76

bounding function that determines whether the current search branch is “hopeless”, meaning77

that there are no assignments that improve upon the best solution found so far. Since it78

is well-known how to certify CDCL search with VeriPB, the main challenge is to certify79

the conclusions of the bounding function. This bounding function makes use of look-ahead80

search to generate (conditional) unsatisfiable cores (literals that cannot be true together).81

These cores are then combined to get an estimate of the best possible objective value that is82

still achievable. Especially in the unweighted case, this combination of cores relies on very83

subtle arguments, which we clearly spell out and formalize in the VeriPB proof system.84

In order to bring this certification to practice, there are more hurdles to overcome:85

state-of-the-art branch-and-bound solvers employ several other clever tricks to speed up the86

solving process, such as pre-processing methods as well as integrating ideas from other search87

paradigms. One particular technique that proved to be challenging is the use of multi-valued88

decision diagrams (MDDs) [6] in order to create a CNF encoding of a solution-improving89

constraint (which is enabled or disabled heuristically depending on the size of the instance at90

hand). The MDD-based encoding used by MaxCDCL generalizes the encoding of Binary91

Decision Diagrams (BDDs) (by allowing splits on sets of variables instead of a single variable)92
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proposed in [1]. From the perspective of proof logging, the main challenge here is to prove93

that these constraints are indeed equivalent. As an example, consider the constraints94

12x1 + 5x2 + 4x3 ≥ 695

and96

12x1 + 5x2 + 4x3 ≥ 9.97

Taking into account that the variables take values in {0, 1}, it is not hard to see that these98

constraints are equivalent: all combinations of truth assignments that lead to the left-hand99

side taking a value at least six, must assign it a value of at least nine. In other words: the100

left-hand side cannot take values 6, 7, or 8. In general, checking whether such a linear101

expression can take a specific value (e.g., 7) is well-known to be NP hard, but BDD (and102

MDD) construction algorithms will often detect this efficiently (in the worst-case this can103

take exponential time, which is why such MDD-based encodings will only be enabled for104

constraints with few variables and small coefficients). The main question of interest for us is105

how to convince a proof checker of the fact that these two constraints are equivalent, without106

doing a substantial amount of additional work. We achieve this using an algorithm that107

proves this property for all nodes in an MDD in a linear pass over its representation.108

We implemented some of our algorithms in MaxCDCL, which is the only branch-and-109

bound solver that participated in last year’s MaxSAT evaluation [25], where it proved to110

be one of the top performing solvers (it won the weighted track and ended second on the111

unweighted track). We intend to experimentally evaluate this work, but currently it is still112

work in progress: while the theory has been worked out and a partial implementation is113

available, we have no concrete results to report yet.114

The rest of this paper is structured as follows. In Section 2, we recall some preliminaries115

about MaxSAT solving and VeriPB-based proof logging. Section 3 is devoted to presenting116

the core of the MaxCDCL algorithm, focusing on look-ahead–based bounding, as well as117

explaining how to get a certifying version of this. In Section 4, we explain how BDDs and118

MDDs are used to encode PB constraints. Section 5 concludes the paper. Formal details119

and proofs are often omitted, but can be found in the supplementary material.120

2 Preliminaries121

We first recall some concepts from pseudo-Boolean optimization and MaxSAT solving.122

Afterwards, we introduce the VeriPB proof system. For a full exposition, we refer the reader123

to [11, 27, 7].124

In this paper, all variables are assumed to be Boolean; meaning they take a value in125

{0, 1}. A literal ℓ is a Boolean variable x or its negation x. A pseudo-Boolean constraint C is126

a 0–1 integer linear inequality
∑

i wiℓi ≥ A. Without loss of generality, we will often assume127

our constraints to be normalized, meaning that the ℓi are different literals and all coefficients128

wi and the degree A are non-negative. A formula is a conjunction of PB constraints. A129

clause is a special case of a PB constraint having all wi and A equal to one. A cardinality130

constraint is a PB constraint where all wi are one. If L is a set of literals, we will sometimes131

simply write L as a shorthand for
∑

ℓ∈L ℓ and thus write constraints such as L + 3K ≥ 42,132

meaning
∑

ℓ∈L ℓ +
∑

ℓ∈K 3 · ℓ ≥ 42.133

A (partial) assignment α is a (partial) function from the set of variables to {0, 1}; it is134

extended to literals in the obvious way. We write C↾α for the constraint obtained from C by135

substituting all assigned variables x by their assigned value α(x). A constraint C is satisfied136

Sof t 2024
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under α if
∑

α(ℓi)=1 wi ≥ A. A formula F is satisfied under α if all of its constraints are. We137

say that F implies C (and write F |= C) if all assignments that satisfy F also satisfy C.138

A pseudo-Boolean optimization instance consists of a formula F and a linear term139

O =
∑

i vibi (called the objective) to be minimized, where vi are integers and bi are different140

literals. If ℓ is a literal, we write wO(ℓ) for the weight of ℓ in O, i.e., wO(bi) = vi for all i141

and wO(ℓ) = 0 for all other literals. In this paper, we view MaxSAT as the special case of142

pseudo-Boolean optimization where F is a conjunction of clauses.143

For a pseudo-Boolean optimization instance (F, O), the VeriPB proof system maintains144

a proof configuration (C, D) where C (standing for core) and D (standing for derived) are145

sets of constraints (initialized as F and ∅, respectively). Constraints can be moved from D146

to C but not vice versa. We are allowed to update the configuration using the cutting planes147

proof system [12]:148

Literal Axioms: For any literal, we can add ℓi ≥ 0 to D.149

Linear Combination: Given two PB constraints C1 and C2 in C ∪ D, we can add a positive150

linear combination of C1 and C2 to D.151

Division: Given the normalized PB constraint
∑

i wiℓi ≥ A in C ∪ D and a positive integer152

c, we can add the constraint
∑

i⌈wi/c⌉ℓi ≥ ⌈A/c⌉ to D.153

VeriPB has some additional rules, which are briefly discussed below. We refer to [7, 20]154

for more details on these rules. There is a rule for dealing with optimization statements:155

Objective Improvement: Given an assignment α that satisfies C, we can add the constraint156

O < O↾α to C.157

This rule states that once a solution is found, we search for strictly better solutions. It is158

also possible to rewrite the objective:159

Objective Reformulation Given a linear term O′ in O, O can be rewritten by replacing O′
160

with O′
new if we have shown that O′ ≥ O′

new and O′ ≤ O′
new.161

VeriPB allows deriving non-implied constraints with a generalization of the RAT rule [26]162

(which is common in proof systems for SAT). This rule makes use of a substitution, which163

maps every variable to 0, 1, or a literal. Applying a substitution ω on a constraint C results164

in the constraint C↾ω obtained from C by replacing each x by ω(x).165

Redundance-based strengthening: If C ∧ D ∧ ¬C |= O ≤ O↾ω ∧ (C ∧ C)↾ω, we add C to C if166

the strengthening-to-core mode is enabled and to D if it is disabled.167

Intuitively, this rule can be used to show that ω, when applied to assignments instead of168

formulas, maps any solution of C that does not satisfy C to a solution of C that does satisfy169

C and that has an objective value that is at least as good. The most important use case of170

the redundance-rule is reification: for any PB constraint C and any fresh variable v, not171

used before, two applications of the redundance rule allow us to derive PB constraints that172

express v ⇒ C and v ⇐ C. Finally, VeriPB has rules for deleting constraints in a way that173

guarantees that no better-than-optimal value can be found:174

Deletion A constraint in D can be deleted at any time. For the deletion of a constraint175

C ∈ C it has to be shown that C can be derived by redundance-based strengthening from176

C \ {C}.177

3 Certification for MaxCDCL178

In this section, we present the MaxCDCL algorithm. We start with the core version of the179

algorithm and afterwards discuss various extensions to it. With each algorithm/extension,180

we immediately discuss what needs to be done to integrate proof logging support for it.181
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3.1 The Core of MaxCDCL182

MaxCDCL combines branch-and-bound search and conflict-driven clause learning (CDCL).183

It maintains the objective value v∗ of the best found solution so far, which is initialized184

as +∞. It performs standard CDCL search (branch). However, when a partial assignment185

is visited where it is clear that the value of the objective will be at least v∗, the search is186

interrupted and a new clause forcing the solver to backtrack is learned (bound).187

VeriPB-based certification for CDCL-based SAT solvers is easy to obtain since VeriPB188

extends the drat proof system. Moreover, this has been done several times before [36, 19, 7],189

making the certification of the branch part straightforward. The bound part, which lies at the190

heart of MaxCDCL, on the other hand, has never been certified before. It consists of a clever191

way of detecting that it is indeed “clear” that all extensions of the current assignment that192

satisfy F have an objective value that is too high. To this end, in the general weighted case,193

given a current assignment α, it uses a lookahead mechanism that is designed to generate194

a set K of weighted local cores: tuples (w, K) where w ∈ N is the weight of the core, and195

K is a core relative to α: a set of negations of objective literals such that F ∧ α ∧ K |= ⊥,196

where ⊥ denotes the trivially false constraint 0 ≥ 1. In other words a local core guarantees197

that, given the assignments in α, the underlying objective literals cannot all be false (or in198

other words: at least one of the underlying objective literals incurs cost). The set K should199

moreover satisfy the properties that200

1. For each objective literal ℓ,201 ∑
w

(w,K)∈K∧ℓ∈K

≤ wO(ℓ),202

i.e., the total weight of all cores containing a literal does not exceed the weight of the203

underlying objective literal in the objective.204

2. The total weight of K exceeds the current upper bound:205 ∑
w

(w,K)∈K

≥ v∗.206

When these conditions are satisfied, since in each assignment that extends α at least one207

literal in each K is false, in each such assignment208

v∗ ≤
∑

w
(w,K)∈K

≤
∑

w
(w,K)∈K

·

∑
ℓ∈K

ℓ

 =
∑

ℓ

 ∑
w

(w,K)∈K∧ℓ∈K

 · ℓ ≤ O (1)209

and we indeed see that the value of the objective in such an assignment can never (strictly)210

improve upon the currently best-found value. This situation is referred to as a soft conflict.211

At this point, the solver can learn the clause ¬α, stating that the current assignment is212

hopeless, but in practice, from the way the local cores are generated, we get more precise213

information. The way this is done is as follows. During the lookahead phase, the solver214

maintains a temporary objective Ot that is initialized to be equal to O. The set of cores is215

initialized with trivially falsified unit cores of the form (w(ℓ), {ℓ}), for all objective literals ℓ216

such that ℓ ∈ α. These represent the cost incurred by the current assignment α. Starting217

from the current assignment α, in the lookahead phase, all unassigned objective literals218

ℓ1, ℓ2, . . . are one at a time falsified (set to their non-cost-incurring polarity) followed by219

application of unit propagation. As soon as220

either an objective literal ℓ′ is propagated to be cost-incurring,221

Sof t 2024
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or a conflict is found222

we can learn a new clause that tells us that under α, the literals ℓi that were falsified (and223

in the first case also the literal ℓ′) cannot be false together. At this point, we can apply224

standard conflict analysis techniques to minimize this learned clause CK corresponding to225

the local core K we will learn. CK consists of (1) a set of negations of literals in α (denoted226

reason(K)) and (2) a set of objective literals, where K is the set of the negations of these227

literals. For the initial cores of the form (w(ℓ), {ℓ}), we define reason(K) = {l}. The228

literals in reason(K) are called the reason for K since they tell us precisely which part229

of the current assignment was relevant for deriving the local core K. The weight wK of230

cores K is chosen to be the minℓ∈K wOt(ℓ) and Ot is rewritten to Ot − wK

∑
ℓ∈K ℓ. The231

lookahead then starts again from scratch, but this time only setting variables still in Ot to232

false (thus excluding objective literals whose weights have been completely “consumed” by233

the previous core). This procedure is guaranteed to indeed produce a set of local cores that234

satisfy condition 1 above. If condition 2 is not satisfied (i.e., the total weight of the produced235

cores does not exceed the upper bound), then MaxCDCL continues search as if nothing236

happened. Otherwise, it learns a clause CK ⊆ ¬α, which is237 ⋃
(w,K)∈K

reason(K).238

239

Indeed, the literals in ¬CK are the literals in the current assignment that prevent the240

solver from finding a (strictly) improving solution. After applying standard conflict analysis241

techniques on the clause CK for further simplification, it is learned by the solver, the solver242

backtracks and continues its search.243

Hardening244

If at some point, we end up in a state where for some literal ℓ currently still unassigned,245

wOt(ℓ) +
∑

w
(w,K)∈K

≥ v∗,246

then a clause can be learned that propagates ℓ to be false. The reasoning for this is that in247

the assignment α ∪ ℓ, we would have found a soft conflict. From the proof logging perspective,248

hardening does not require special treatment, so in what follows we focus on soft conflicts.249

Proof-Logging for Lookahead-Based Bounding with Soft Conflicts250

The VeriPB proof of lookeahead-based bounding we produce is heavily inspired by equation251

(1). Essentially, what happens is that we will reproduce this derivation inside the VeriPB252

proof, and as such we will derive that α ⇒ O ≥ v∗. Combining this with the model-improving253

constraint then allows to derive a clause that excludes the current assignment α. All further254

minimizations that happen to this clause are done using standard conflict analysis (i.e., using255

resolution and hence, can be de done using explicit cutting planes derivations).256

3.2 Literal Unlocking for Cardinality Reasoning257

In the unweighted case, during the lookahead-based bounding a smarter mechanism is258

employed. In this case, the objective to minimize is of the form259 ∑
ℓ∈objLits

ℓ.260
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Given a previous upper bound v∗, in this case the lookahead procedure described above would261

yield a set of v∗ disjoint cores. Instead of searching for a set of disjoint cores, MaxCDCL262

would in this situation search for a set of disjoint cardinality constraints: a set L of tuples263

(b, L) such that:264

1. Each L is a set of objective literals s265

2. For each (b, L) in L, it holds that F ∧ α |= L ≥ b (we remind the reader that we write266

L ≥ b for
∑

ℓ∈L ℓ ≥ b).267

3. For each pair (b, L) and (b′, L′) in L, L ∩ L′ = ∅.268

4. The total weight exceeds the current upper bound:
∑

(b,L)∈L b ≥ v∗.269

If these four conditions are satisfied, we can see that indeed270

F ∧ α |=
∑

ℓ
ℓ∈objLits

≥
∑

ℓ
(b,L)∈L,ℓ∈L

≥
∑

b
(b,L)∈L

≥ v∗.271

In other words, each assignment more precise than α will have an objective value that does272

not improve upon the best found so far and we can learn a clause that excludes the current273

assignment α.274

The construction of such a set of disjoint cardinality constraints is achieved building on275

the following result.276

▶ Definition 1. Let (b, L) be a cardinality constraint, U a subset of L, and L′ a set of objective277

literals disjoint from L. We say that L′ unlocks (b, L) on U if |U | ≥ b and F ∧α∧
∧

ℓ∈L′ ℓ |= ℓ′
278

for each ℓ′ ∈ U .279

▶ Proposition 2. Assume ⟨(bi, Li)⟩|i∈[1,k] is a sequence of cardinality constraints such that280

F ∧ α |= Li ≥ bi for each i. Furthermore let L be a set of objective literals disjoint from all281

the Li and let Ui ⊆ Li be such that L ∪
⋃

j<i Lj \ Uj unlocks Ui for each i. If additionally282

F ∧ α |= L +
∑

i

(Li \ Ui) ≥ 1,283

then284

F ∧ α |= L +
∑

i

Li ≥
∑

i

bi + 1.285

This proposition tells us that instead of searching for a new core that is disjoint from all286

the previously found cores (or more general, cardinality constraints), we can search for one287

that overlaps with some of the previous constraints, provided that all these constraints get288

unlocked. In practice this leads to a procedure whereby we falsify one by one all as-of-yet289

unassigned objective literals. As soon as unit propagation allows us to conclude that one of290

the previous cardinality constraints is unlocked, we are again allowed to assign the remaining291

literals from that cardinality constraint. If at some point, this yields a conflict, we can cut to292

the core of the conflict using standard conflict analysis techniques and learn a new cardinality293

constraint that increases the total bound by one. Let us illustrate this on a small example.294

▶ Example 3. Assume x1, . . . , x10 are objective literals (to be minimized). During the295

lookahead phase, the following happens:296

Assigning x1 = x2 = x3 = x4 = 0 results in a conflict. After analyzing this conflict the297

cardinality constraint (clause, in this case)298

x1 + x2 + x4 ≥ 1 (2)299

is learned.300

Sof t 2024
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Assigning x3 = x5 = 0 propagates x6 = 1, meaning that the cardinality constraint301

x3 + x5 + x6 ≥ 1 (3)302

is learned.303

Assigning x7 = x8 = 0 and running unit propagation yields x1 = 1. At this point, the304

core (2) is unlocked. Further assigning x2 = x4 = 0 unit propagates to a conflict. As305

such we can replace core (2) by306

x1 + x2 + x4 + x7 + x8 ≥ 2. (4)307

In combination with (3), this tells us that the value of the objective is at least three.308

Assigning x9 = 0 unit propagates that x1 = x3 = 1. This is not enough to unlock (4), but309

(3) is unlocked at this point. Assigning x5 = x6 = 0 propagates that x7 = 1, meaning310

that also (4) gets unlocked. Further assigning x2 = 0 results in a conflict, meaning that311

we can replace (3) and (4) by312 ∑
1≤i≤9

xi ≥ 4.313

Proof-Logging for Literal Unlocking314

To prove correctness of these reasoning steps we will, as before make use of the fact that315

whenever unit propagation derives a new literal or contradiction, a clause can be learned316

that expresses precisely this propagation. The final clause to be learned can then be derived317

following the next proposition. In this proposition, we make abstraction of the current318

assignment α, but the proposition directly generalizes to that case by appending
∑

ℓ∈α Mℓ319

to the left-hand side of every constraint (for a large enough constant M). The effect of this320

is that the constraint is made conditional on α.321

▶ Proposition 4. Let Li|1≤i≤k and L be pairwise disjoint sets of objective literals and bi|1≤i≤k322

natural numbers. Assume Ui ⊆ Li with |Ui| = bi for each i and write Ri for Li \ Ui. From323

the constraints324

Li ≥ bi for each i (5)325

L +
∑
j<i

Rj + ℓ ≥ 1 for each i and each ℓ ∈ Ui (6)326

L +
∑

j

Rj ≥ 1 (7)327

328

there is a cutting planes derivation that derives329

L +
∑
j>i

Uj +
∑

j

Rj ≥ 1 +
∑
j>i

bj (8)330

331

for each i ∈ {0, . . . , k}. In particular, taking i = 0, there is a cutting planes derivation of332

L +
∑

j

Lj ≥ 1 +
∑

j

bj . (9)333

334

Please note that (5) represents the previously derived cardinality constraints, (6) are the335

constraints that guarantee that L ∪
⋃

j<i Rj unlocks (bi, Li) on Ui and (7) is the constraint336

representing the final contradiction that is derived. The constraint (9), in case the sum of337

all the bi is large enough, allows us indeed to conclude that there are no assignments that338

improve upon the best value found so far. While Proposition 4 only specifies the existence of339

a cutting planes derivation, the proof is constructive and provides all the details necessary to340

automate this construction.341
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4 Certified BDD-Based Encodings of PB Constraints342

A Binary Decision Diagram (BDD) is a (node- and edge-)labeled graph with343

Two leaves, labeled true (t) and false (f), respectively344

Each internal node is labeled with a variable and has two outgoing edges, labeled true (t)345

and false (f), respectively.346

Each node in a BDD represents a Boolean function. If η is a node labeled x with true347

child ηt and false child ηf , it maps any (total) interpretation I to n(I), which is defined as348

ηt(I) if x ∈ I and as ηf (I) if x ∈ I. The true and false leaf nodes represent a tautology and349

contradiction respectively.350

A BDD is ordered if there is a total order of the variables such that each path through the351

BDD respects this order and it is reduced if two conditions hold: (1) no node has two identical352

children and (2) no two nodes have the same label, t-child and f -child. For a fixed variable353

ordering, each Boolean function has a unique ordered and reduced representation as a BDD,354

i.e., ordered and reduced BDDs form a canonical representation of Boolean functions. From355

now on, we will fix the standard variable ordering (ordering the xi based on their index),356

but the ideas presented here work for an arbitrary ordering. When we write bdd(x, ηt, ηf )357

we mean a node in the BDD labeled x with true child ηt and false child ηf . If the BDD is358

reduced, this node is unique if it exists.359

In MaxCDCL, BDDs are used, heuristically, to encode the solution-improving constraint360

O ≤ v∗ in SAT. This is done in two phases: first a BDD is constructed, then a set of clauses361

is generated from this BDD.362

Phase 1: Construction of a BDD for O ≤ v∗
363

For simplicity of the presentation, we will assume here without loss of generality that O is of the364

form
∑n

i=1 aixi (with all the ai positive and all the xi variables). The standard way to create365

a reduced and ordered BDD for O ≤ v∗ is to create BDDs ηt for
∑n

i>1 aixi ≤ v∗ − a1 and ηf366

for
∑n

i>1 aixi ≤ v∗, while making sure the diagram remains reduced, and combine them into367

the node bdd(x1, ηt, ηf ). However, this approach will always require an exponential number368

of calls; to avoid this in many cases (but not in the worst-case), a dynamic programming369

approach was developed. All the PB constraints for which we will create a BDD node are of370

the form371

n∑
i≥k

aixi ≤ A. (10)372

The key observation is that in case
∑n

i≥k aixi cannot take the value A (because of the xi373

being Boolean variables), then this is in fact equivalent to
∑n

i≥k aixi ≤ A − 1. In fact, for374

each such pseudo-Boolean constraint there is a (possibly unbounded) interval [l, u] such that375

for all b ∈ [l, u], (10) is equivalent to
∑n

i≥k aixi ≤ b, and moreover, this interval can be376

computed “bottom-up” from the BDD structure. We will denote this as377

n∑
i≥k

aixi ≤ [l, u]. (11)378

The dynamic programming approach now consists in keeping track of this interval for each379

translated PB constraint and reusing already created BDDs whenever possible. In other380

words, memoization is used for two things: (1) for looking up whenever a new BDD needs to381
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be created for a formula of the form (10) whether that combination of k and A is already382

captured by a previously created BDD and (2) for looking up whether a node with two383

specified children already exists. To illustrate this last point, note that the formulas384

2x + 7y + 7z + 7u ≤ [9, 13]385

and386

7y + 7z + 7u ≤ [7, 13]387

are equivalent and hence should have the same respresentation in a reduced BDD-based388

representation.389

Phase 2: A CNF Encoding From the BDD390

Given a BDD that represents a PB constraint, constructed as discussed above, we can get a391

CNF encoding as follows:392

For each internal node η in the BDD, a new variable vη is created; intuitively this variable393

is true only when the Boolean function is true. In practice for the two leaf nodes no394

variable is created but their truth value is filled in directly. However, in the proofs below395

we will, to avoid case splitting pretend that a variable exists for each node.396

For each internal node η = bdd(x, ηt, ηf ), the clauses397

vηt ∧ x ⇒ vη (12)398

and399

vηf ∧ x ⇒ vη (13)400

are added (encoding precisely the two cases in which the Boolean function in this node401

can be violated). If all the coefficients are positive, the second clause can be further402

simplified to vηf ⇒ vη.403

Finally, for the topf node v⊤ representing O ≤ v∗, the unit clause v⊤ is added.404

Certifying the BDD-Based CNF Encoding405

Our strategy for certifying this works as follows.406

First we introduce the new variables using their pseudo-Boolean definitions and immedi-407

ately prove that the lower and upper bound in the interval yield the same Boolean function.408

This can be done by structural induction on the BDD. Formally, for each node η, representing409

the PB constraints (11), we will show that we can derive410

vη ⇒
n∑

i≥k

aixi ≤ l, which is

 n∑
i≥k

ai − l

 · vη +
n∑

i≥k

−aixi ≥ −l (14)411

and412

vη ⇐
n∑

i≥k

aixi ≤ u, which is (u + 1) · vη +
n∑

i≥k

aixi ≥ u + 1. (15)413

Showing this is the hard part of the derivation.414

Secondly, we derive the desired clauses from the BDD. This can be done using a415

straightforward cutting planes derivation.416
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Certifying Reduced BDDs417

Since we are working with reduced BDDs, it can happen that different constraints are418

represented by the same node because they are the same underlying Boolean function. In this419

case, what we need to show is that these Boolean functions are indeed equivalent. Specifically,420

the situation we can arrive at is that we will find a node that represents both the following421

constraints422

n∑
i=β

aixi ≤ [l1, u]
n∑

i=α

aixi ≤ [l2, u]423

424

with α < β and with l2 = l1 +
∑β−1

i=α ai. What we show then is that there is a cutting planes425

derivation that from the constraints426

v ⇒
n∑

i=β

aixi ≤ l1 (16)427

v ⇐
n∑

i=β

aixi ≤ u (17)428

429

we can derive the constraints430

v ⇒
n∑

i=α

aixi ≤ l2 (18)431

v ⇐
n∑

i=α

aixi ≤ u (19)432

433

In other words, we obtain two instantiations of the constraints (14) and (15) for a single434

variable v, but for the different constraints. Since the rest of our proof logging procedures435

only rely on having derived these two constraints, this is sufficient.436

Using Multi-Valued Decision Diagrams (MDD)437

MaxCDCL not only makes use of BDDs for encoding the solution-improving constraint,438

but also of MDDs. The idea is as follows. In some cases, MaxCDCL can infer implicit439

at-most-one constraints. These are constraints of the form
∑

i∈I xi ≤ 1 where the xi are440

literals in the objective O. The detection of such constraints is common in MaxSAT solvers,441

and certification for it has been described in [2], so we will not repeat this here. Now442

assume that a set of disjoint at-most-one constraints has been found. In an MDD, instead of443

branching on single variable in each node, we will branch on a set of variables for which an444

at-most-one constraint has previous been derived. This means a node does not have two, but445

|I| + 1 children: one for each variable in the set and one for the case where none of them446

is true. Otherwise, the construction and ideas remain the same. As far as certification is447

concerned: essentially all proofs continue to hold; the main difference is that there where448

case splitting is used, we will now split into |I| + 1 cases instead of two (splitting on whether449

the variable decided on in that node is true or false) and then use the at most one constraint450

to derive that the conclusion must hold in any case.451

5 Conclusions and Future Work452

In this paper, we have for the first time presented certification for branch-and-bound MaxSAT453

solving. This work fits in an ongoing effort to show that VeriPB-based proof logging is454
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feasible for different MaxSAT solving paradigms. Together with previous work, three out455

of the four major paradigms are now covered, the major omission being implicit hitting-456

set search. While we see no major theoretic obstacles, an important hurdle preventing457

proof logging for this last paradigm is the fact that state-of-the art solvers make use of458

commercial closed source MIP solvers for computing their hitting sets. Unless these solvers459

are equipped with proof logging capabilities, or if they are replaced by an open-source460

alternative, certification will remain out of reach.461

Our quest to extend MaxCDCL with proof logging capabilities also resulted in an462

investigation of BDD-based CNF encodings of pseudo-Boolean constraints. This relates to463

the work [10], who has used BDDs for DRAT-based proof logging. In contrast, the focus of464

our work is not on developing general proof logging methods for arbitrary BDD operations,465

but specialized procedures for the constructions occurring in the constructions of BDDs (and466

more generally MDDs) for encoding PB constraints. For this pseudo-Boolean proof logging467

turned out to be very practical as it enabled us to reason about intervals of bounds.468

In the near future, we plan to finish our implementation and experimentally evaluate the469

performance of our proof logging procedures.470
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